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Abstract

The Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) has
been recently found responsible for the pandemic outbreak of a novel coronavirus
disease (COVID-19). In this work, a novel approach based on deep learning is
proposed for identifying precursors of small active RNA molecules named mi-
croRNA (miRNA) in the genome of the novel coronavirus. Viral miRNA-like
molecules have shown to modulate the host transcriptome during the infec-
tion progression, thus their identification is crucial for helping the diagnosis or
medical treatment of the disease. The existence of the mature miRNAs de-
rived from computationally predicted miRNA precursors (pre-miRNAs) in the
novel coronavirus was validated with small RNA-seq data from SARS-CoV-
2-infected human cells. The results demonstrate that computational models
can provide accurate and useful predictions of pre-miRNAs in the SARS-CoV-2
genome, underscoring the relevance of machine learning in the response to a
global sanitary emergency. Moreover, the interpretability of our model shed
light on the molecular mechanisms underlying the viral infection, thus con-
tributing to the fight against the COVID-19 pandemic and the fast develop-
ment of new treatments. Our study shows how recent advances in machine
learning can be used, effectively, in response to public health emergencies. The
approach developed in this work could be of great help in future similar emer-
gencies to accelerate the understanding of the singularities of any viral agent
and for the development of novel therapies. Data and source code available at:
https://sourceforge.net/projects/sourcesinc/files/aicovid/.

1 Introduction

MicroRNAs (miRNAs) are a special type of small non-coding RNA of ≈22 nucleotides
in length that can be found in plants, metazoans and viruses. MiRNAs participate
in gene regulation influencing diverse biological processes such as development, pro-
liferation, cell differentiation and metabolism across different cell types (Bartel, 2004;
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Gurtan & Sharp, 2013). They also play important roles in disease development and
progression. MiRNAS are processed from long intermediates, known as miRNA pre-
cursors (pre-miRNAs). In animals, the specificity and function of miRNAs are deter-
mined by the nucleotides 2 to 7 of the mature region of the miRNAs. The quantifica-
tion of the dynamic abundance of specific miRNAs can assist in diagnosis, prognosis
prediction and therapeutic assessment. Notably, host miRNAs have been recently
associated with antiviral defense mechanisms triggered by a coronavirus, and the ac-
tivity of miRNAs derived from viral genomes has also been proved (Li & Zou, 2019;
Guzzi et al., 2020).

The Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) is the agent
responsible for the recent pandemic outbreak of a novel coronavirus disease (COVID-
19). SARS-CoV-2 is a positive-single stranded RNA virus with a genome of ≈30
kb. The discovery of miRNAs in the novel virus is of paramount importance in
the context of the current worldwide sanitary crisis, especially for contributing to
the improvement of diagnostic and treatment strategies (Ivashchenko et al., 2020;
Huan et al., 2015). Biochemical identification of novel miRNAs is hampered by the
requirements for wet/biological experimental setup, which can be expensive and time-
consuming especially in the case of complete genomes (Li et al., 2009). This difficulty
led to the development of several computational approaches for predicting miRNAs
and their precursors based on genomic information (Allmer & Yousef, 2012; Stegmayer
et al., 2019; Bugnon et al., 2021).

Machine learning (ML) approaches for pre-miRNA prediction involve training a
binary classifier following a supervised learning strategy using well-known pre-miRNA
sequences (deposited in miRBase1 (Kozomara et al., 2018) as the positive class, for
identifying genomic regions with the highest chance of being miRNA precursors. The
pre-miRNAs adopt a very well-known RNA secondary structure during biogenesis,
named stem-loop or hairpin, which allowed the development of feature extraction
algorithms for their identification. This secondary structure typically exhibits a few
internal loops or asymmetric bulges. A large amount of hairpin-like structures can be
found in a genome, most of which do not behave as pre-miRNAs. Thus, their correct
identification is still a big challenge (Bugnon et al., 2021).

The computational detection of pre-miRNAs additionally suffers from a big chal-
lengue: the presence of very high class-imbalance, which has important consequences
on the learning process producing classifiers with very poor predictive accuracy for
the minority class. The class-imbalance problem has been largely recognized as an
important issue in ML (Haixiang et al., 2017). It occurs when there are significantly
lower training examples of one class in comparison to the other one. Most ML algo-
rithms work well with balanced data sets, although imbalanced data in a supervised
classifier can produce a model completely biased towards the majority class, with very

1http://www.mirbase.org/
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low performance on the minority one, and generating many false positives (Bugnon
et al., 2020).

In the particular problem of pre-miRNAs prediction, the big challengue here is
that there are only tens or hundreds of well-known pre-miRNAs (the positive class),
versus millions of unknown (unlabeled) sequences across the rest of the genome, most
of which are really negative class albeit including yet unknown hidden pre-miRNAs.
For example, the Anopheles gambiae genome has only 66 well-known pre-miRNAs,
but more than 4 million hairpin-like sequences, thus giving an imbalance of 1:60,000
(Bugnon et al., 2019). In the case of viruses, for example, the value of imbalance
ranges from 1:30 approximately in the bovine leukemia virus, 1:130 in the Epstein-
Barr virus, and up to 1:400 in the Herpes virus of turkeys, which has only 8 known
pre-miRNAs and a genome of 159 kb.

In the last decade, a growing number of strategies have been proposed for tackling
the computational detection of pre-miRNAs and overcome the mentioned challengues.
The first models were based on transcriptomics as input data, using heuristics with
a limited capacity to detect miRNA precursors with low similarity to the reference
set (Wei et al., 2014). To overcome this limitation, different ML approaches appeared
(Stegmayer et al., 2019), for example based on random forest (Jiang et al., 2007).
These methods use features extracted from typical properties of known pre-miRNAs,
i.e the number of loops in a sequence, the average length of the sequence, the min-
imum free energy when folding the secondary structure (MFE), among many others
(Liu et al., 2012; Yones et al., 2015). More recently, deep learning (DL) models have
been developed for this task, not requiring any feature engineering since they can auto-
matically extract motifs (patterns of nucleotides) from a set of homologous sequences,
and being able also to efficiently handle the large class imbalance. This kind of model
can be fed with the predicted secondary structure of a sequence coded into a matrix,
and the primary sequence information, easily represented with a one-hot encoding
matrix (Tang & Sun, 2019). Very recent reviews on a large number and many types
of methods for the discovery of novel pre-miRNAs, in several species, have clearly
shown that the best methods for prediction are those based on DL(Bugnon et al.,
2021). A comprehensive comparison with experimental results in the human genome
has shown that, for the highest class imbalance (1:5,000), DL models have the highest
performance (F1 ≈ 60%), clearly outperforming other methods based on random for-
est (F1 ≈ 30%) and classical support vector machines (F1 ≈ 20%) (Stegmayer et al.,
2019).

In the context of the actual sanitary emergency worldwide, many recent articles
indicate ML as the methods that can be employed for battling the COVID-19 by
integrating and analyzing heterogeneous types of medical information. A survey on
the state-of-the-art of AI and big data for the COVID-19 pandemic emphasizes their
speed and importance in responding to the coronavirus outbreak trying to prevent its
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severe effects (Pham et al., 2020). For example, in (Babukarthik et al., 2020) a Genetic
Deep Learning Convolutional Neural Network was proposed to classify COVID-19 and
normal chest RX images. A comprehensive review of DL approaches based on images
for COVID-19 detection has compared several methods, finding that the best ones
can reach almost 90% accuracy (Alakus & Turkoglu, 2020). Thus, ML has shown
to have the potential to aid in rapid evaluation of medical data, for differentiation
of COVID-19 findings from other clinical entities with DL and images Harmon et al.
(2020).

Additionally to methods based on images, several ML methods have helped fight-
ing the virus, for example with Extreme Learning Machines for drugs recommendation
and for the estimation of Remdesivir drug behavior on the patients treatments; with
Long/Short Term Memory models for classifying the best treatment method and for
the estimation of cardiac involvement caused by the viral infection; with Genera-
tive Adversarial Network for visualization and detection of new human coronaviruses,
and for the probability estimation of the process of viral gastrointestinal infection
(Jamshidi et al., 2020). Koppu et al. (2020) employed Principal Component Analysis
for the extraction of features, which are used within a Deep Belief Network for disease
prediction. All of these studies coincide in how ML techniques could help in speeding
up research and assisting in the current COVID-19 crisis, and furthermore, how using
ML could be a huge advantage in combating various similar viruses in the future.

Differently from the approaches reviewed, and in front of the full lack of knowl-
edge about this novel virus nature and behaviour, we propose here the first pipeline
to discover new pre-miRNAs in SARS-CoV-2 with deep learning. We believe that
deciphering the potential activity of novel miRNAs encoded within the viral genome
with ML and hijacking the human transcriptome could help to advance the frontiers of
actual strategies for diagnosis and therapeutics. Thus, we have developed a novel ML
approach specifically designed for finding pre-miRNAs in the SARS-CoV-2 genome.
The pipeline proposed allows the prediction from the full raw genome of the virus,
without pre-processing, with deep learning. We present here our proposal in detail,
the comparison of several alternative methods for the pipeline, and the results ob-
tained. It has to be highlighted that, remarkably, some candidate pre-miRNAs that
were computationally predicted by our pipeline were actually experimentally validated
with small RNA-seq data from SARS-CoV-2 infected human cells.

This paper is organized as follows. Section 2 explains in detail the ML-based
pipeline designed for finding novel pre-miRNAs in the SARS-CoV-2 genome and the
ML models used in this work. In Section 3 the data sets used in this study and the
feature extraction process are explained. Section 4 shows the results obtained and
their discussion. Finally, the conclusions of this work can be found in Section 5.
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2 Identifying novel pre-miRNAs in SARS-CoV-2

2.1 Processing pipeline

The approach developed based on ML for finding pre-miRNAs within the novel coro-
navirus genome is shown in Figure 1. In the first step, the complete genome of the
SARS-CoV-2 is cut into small sequences of a fixed length. This genome pre-processing
step is crucial because it has a strong influence on the subsequent steps and the final
results. For example, with respect to the cutting window length, if it is set arbitrarily,
relevant sequences can be lost. If a too-short window length is used, a sequence with
hairpin structure could be cut in half, leading to loss of structural features. If a too-
long window length is used, many hairpins can be captured inside the same sequence,
thus structural features become more complex and much more difficult to recognize
by the classifier. These issues were discussed properly in previous works (Yones et al.,
2015; Bugnon et al., 2019). Thus, to prevent these adverse influences and to ensure
that no important sequences are lost nor inappropriately trimmed, the genome is cut
into overlapped segments longer than the mean length of the pre-miRNAs of interest
for the species under processing (in this case, viruses). The length of the cutting win-
dow has to be configured to define the maximum size that the stem-loops will have
(this way shorter stems can also be identified). A stem-loop is a sequence that, once
predicted its secondary structure, fulfils certain conditions such as minimum energy
released when folding, unpaired nucleotides at the middle (the loop) and a minimum
length in the remaining paired nucleotides (the stem). The window must be long
enough to correctly include a complete hairpin, as well as to take into account the
neighborhood of any possible hairpin when estimating the secondary structure. This
is very important since the results of estimating a secondary structure can be greatly
affected by the neighborhood of the sequences.

The second step consists in the prediction of the secondary structure resulting
from the folding of the sequences obtained in the previous windowing and cutting
step. This is classically done with the RNAfold tool (Hofacker, 2003), an algorithm
that uses dynamic programming for finding the secondary structure which minimizes
the energy released. Then, simple representations are used to extract the main features
of pre-miRNAs, which are based on the inherent characteristics of the sequences and
the secondary structure of these types of molecules. Some typical features are, for
example, the nucleotides and dinucleotides proportion, the matching triplets, the GC
content, the length of the sequence, the MFE, the frequency of occurrence of certain
pairs of nucleotides, among many others. A large number of studies indicate that local
sequence features as well as secondary structure are very important for pre-miRNAs
identification (Li et al., 2009; Allmer & Yousef, 2012; Liu et al., 2012). The candidate
sequences, their secondary structures and the set of extracted features are then used
as inputs to a ML classifier, specifically designed for pre-miRNA prediction. These
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Figure 1: Processing pipeline based in machine learning for finding potential pre-
miRNAs in the genome of the Severe Acute Respiratory Syndrome-Coronavirus 2
(SARS-CoV-2), responsible for the novel coronavirus disease (COVID-19): a) Genome
cut into sequences, b) Prediction of secondary structure and feature extraction, c) One-
hot encoding of the nucleotides (A, U, G, C) and matches (‘()’) or mismatches (‘.’)
in the secondary structure, d) Input feature vector, e) The deeSOM classifier, f) The
OC-SVM classifier, g) The mirDNN model.

6

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
si

nc
.u

nl
.e

du
.a

r)
L

. A
. B

ug
no

n,
 J

. R
aa

d,
 G

. M
er

in
o,

 C
. Y

on
es

, F
. A

ri
el

, D
. H

. M
ilo

ne
 &

 G
. S

te
gm

ay
er

; "
D

ee
p 

L
ea

rn
in

g 
fo

r 
th

e 
di

sc
ov

er
y 

of
 n

ew
 p

re
-m

iR
N

A
s:

 h
el

pi
ng

 th
e 

fi
gh

t a
ga

in
st

 C
O

V
ID

-1
9"

M
ac

hi
ne

 L
ea

rn
in

g 
w

ith
 A

pp
lic

at
io

ns
, V

ol
. 6

, N
o.

 1
00

15
0,

 2
02

1.



classifiers provide scores according to the likelihood of each RNA sequence of being a
pre-miRNA. For this study, we have selected three ML methods: a classical model as
baseline and two top-performing and very recently published proposals based on deep
learning. These methods have already been validated individually with benchmark
data from well-known pre-miRNAs in humans (Bugnon et al., 2021; Yones et al.,
2021). Finally, the best model was used for the pre-miRNA predictions in SARS-
CoV-2.

2.2 Machine learning models for pre-miRNAs prediction

The ML methods must be trained for identifying RNA sequences highly likely to be
miRNA precursors (Stegmayer et al., 2019). Among all possible supervised classifiers,
support vector machines (SVM) have been the first and most widely applied algorithm
for pre-miRNAs prediction (Xue et al., 2005). A classical supervised approach needs
both positive (real well-known pre-miRNA) and negative sequences. In this study,
a more recent approach was used, which employs only the positive labeled data for
building a classification frontier: the one-class SVM (OC-SVM). It has been shown
that this approach outperforms standard two-classes SVM in pre-miRNA prediction
because it is capable of learning a decision frontier only from the well-known pre-
miRNAs, avoiding the large class imbalance issue (Yousef et al., 2010). Thus, the OC-
SVM was trained with features from known viral pre-miRNAs only from miRBase.
Then, the fitted model was used on the sequences extracted from the SARS-CoV-2
full-genome.

The second method was the deeSOM model (Bugnon et al., 2020), which consists of
several hierarchical layers with self-organizing maps (SOMs). This model has already
proven to be very suited to the pre-miRNA prediction task (Bugnon et al., 2021).
This model has an ensemble of unsupervised SOMs that are used in parallel at the
first level. The unlabeled samples are provided as input data by splitting them among
the members of the ensemble, which also receive the full set of positive class cases.
This allows to reduce the imbalance at each SOM in the ensemble, each one learning
a different unlabeled subspace. At each SOM layer, pre-miRNA neurons are identified
as those having, at least, one positive class sample. Only the sequences that are
in pre-miRNA neurons pass to the next level. At each level, the map size of each
SOM layer is automatically determined by an adaptive algorithm, depending on the
number of sequences that arrive from the previous layer. This changes the distribution
of samples on each layer, allowing a further depuration of pre-miRNA candidates.
Therefore, several deep layers are added with this self-size-adjusting method, until only
known pre-miRNA samples remain at the last map. The best candidate sequences are
identified as the ones in the pre-miRNA neurons of the last levels. Thus, this model
was trained with the features of known pre-miRNAs sequences from other viruses
(positive-class samples), 1 milllon of negative sequences from the human genome, and
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the features of all the sequences extracted from the full-genome of the novel coronavirus
(marked as unlabeled). The largest possible number of structural features available
in literature (Yones et al., 2015) were extracted.

Finally, the third method was mirDNN (Yones et al., 2021), a convolutional neu-
ral network based on a residual network. This model is trained directly with raw
RNA sequences, their corresponding predicted secondary structure and MFE. Thus,
the input is represented as a one-hot-encoding tensor of shape L × 4, being L the
maximum sequence length. Each row of the tensor represents the four possible ri-
bonucleotides A, U, G, C and each column represents a position in the sequence. The
tensor size is fixed and completed with zero-padding for sequences shorter than L.
The secondary structure is represented as a tensor of shape L × 1, where the value
of each element indicates the type of match with the opposite nucleotide. These two
tensors are concatenated over the first dimension to form a tensor of shape L × 5,
which is the input of the model. The first layer of this network is a one-dimensional
convolution, followed by stacked identity blocks (He et al., 2016) and pooling layers.
The identity blocks allow the model to auto-define the number of convolutional layers
needed during training, avoiding optimization of this critical hyperparameter. Each
block is composed of two activation functions, two batch normalization layers, and two
convolutions. The result is summed up to the input of the next identity block, which
helps back-propagate the training error, allowing the addition of convolution layers
without bothering the training of the model. After the identity blocks, a pooling layer
is used to reduce the length L of the sequence by 2. After several of these stages,
another tensor is obtained, which is converted into a one-dimensional vector that then
passes through activation and batch normalization layers. Then, the input sequence
stability, calculated as -MFE/length of the sequence, is appended in order to form a
new tensor that feeds a fully connected layer that generates the corresponding output
score. For training this model, the focal loss (FL) function (Lin et al., 2020) has been
used in order to tackle the high class-imbalance. Usually, when the negative exam-
ples (the majority class) are forwarded in the network, they generate an error to be
back-propagated through the model whose sum is much larger than the contribution
of the (few) positive examples. Thus, the model is heavily biased towards the negative
class, meanwhile the positive class is not properly learned. In order to overcome this
problem, the FL function can be used to reduce the weight given to the examples
easily classified, and increase the weight of the most difficult samples. Therefore, in
an imbalanced escenario, the model errors for both the minority (in this case, the pos-
itive) class and the unlabeled near the positive class increase in importance to a higher
extent than the most obvious negative samples, driving the learning of the network.
The mirDNN was trained using the known viral pre-miRNAs as positive class and 1
milllon of negative sequences from the human genome. After training, the complete
genome of the SARS-CoV-2 virus was used for prediction.
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3 Data preparation and performance measures

The whole sequence of the novel coronavirus genome was obtained from NCBI Ref-
erence Sequence NC 045512.2: Severe acute respiratory syndrome coronavirus 2 iso-
late Wuhan-Hu-1. The SARS-CoV-2 genome was segmented with HextractoR (Yones
et al., 2020) into 600 nt long fragments with 500 nt overlaps, in order to avoid missing
any important structure. The following parameters were used: single loop trimming,
minimum sequence length 60, minimum number of base-pairs that must form a se-
quence 16, and final trimming optimizing the minimum free energy normalized by the
sequence length (NMFE). The secondary structure of each segment obtained from the
complete genome was predicted by using RNAfold (Hofacker, 2003) with default set-
ting obtaining 597 hairpins in total, which were considered as unlabeled samples. The
positive labeled samples (known pre-miRNAs) were downloaded from miRBase v22,
retrieving 569 pre-miRNAs of viruses. A total of 73 structural features from the folded
sequences of the virus genome and the well-known viruses pre-miRNAs were extracted
with miRNAfe (Yones et al., 2015) as in (Bugnon et al., 2019), and normalized with
z-score. The included features are: length of the sequence, MFE, cumulative size of
internal loops found in the secondary structure, number of loops, absolute and relative
GC content, among many others (detailed information in Supplementary Material).

For the validation of the computational predictions on the SARS-CoV-2 premiR-
NAs, expression profiling by high throughput small RNA sequencing (RNA-seq) of
the epithelial lung cancer cell line Calu-3 mock and infected with SARS-CoV-2 (USA-
WA1/2020) were obtained from NCBI (Reference series GSE148729, made public on
May 4th 2020). To identify human genes and cellular pathways influenced by SARS-
CoV-2 infection, Singh et al performed genome-wide measurements of different aspects
of gene expression at the bulk and single-cell level. Calu-3 cell line was mock-treated
or infected with SARS-CoV-2 and harvested at different time points. Gene expression
profiling was determined using bulk and single-cell polyA RNA-seq, small RNA-seq,
and total RNA-seq. Alignment files of small RNA-seq samples against SARS-CoV-
2 genome were downloaded from NCBI repository. More details on the biological
experiment and sequencing technologies used can be found in (Singh et al., 2020).

In order to compare the ML methods for the same task of pre-miRNA prediction
in virus, they have been tested in a cross-validation scheme with a dataset including
all the known pre-miRNAs from viruses (positive samples), and different amounts of
hairpin-like sequences (negative samples) from the human genome. The performance
was assessed with

s+ =
TP

TP + FN
, p =

TP

TP + FP
, F1 = 2

s+p

s+ + p
,

where TP , FP and FN are the number of true positives, false positives and false neg-
atives, respectively. The sensitivity or recall (s+) measures how good a classification
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Figure 2: Precision-recall curves for each model and imbalance ratio a) 1:50, b)1:100,
c)1:200. Bold line is the mean value, and the shaded area is its standard deviation
from cross-validation results. Maximum F1 and AUCPR are indicated for each curve.

method is for recognizing (and not missing) the TPs of the problem. The precision
(p) measures the relation between TPs and FPs. In a realistic scenario for practi-
cal applications, precision is very important in imbalanced datasets because FPs can
be many more than the TPs. Thus, considering the characteristics of the classifica-
tion problem under study, it is important to take into account both sensitivity and
precision. Therefore, F1 was used as a global comparative measure.

Performance curves for the ML methods were drawn using the precision vs recall
curve (PRC) plot, since this representation is preferred to assess binary classifiers
with imbalanced data. For high imbalances, a classifier can reach a good performance
in terms of specificity, but can perform poorly in providing good quality candidates,
with a large amount of false positives. Instead, PRC plots can provide a more clear
assessment of performance due to the fact that they evaluate the fraction of TPs
among the total positive predictions.

4 Results

4.1 Performance of the MLmethods with known pre-miRNAS
from viruses

Several imbalance ratios (IR) were used to test the models in conditions close to the
most common IRs expected in the publicly available viral genomes: 1:50, 1:100, and
1:200. The different IRs were created by maintaining always the same number of
positives and varying the number of corresponding negative sequences.

The PRCs of a 10-fold cross-validation of the models presented in Section II.B,
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for the different imbalance ratios, are shown in Figure 2. Each sub-plot in the Figure
shows the PRC for each method at a particular IR, the maximum F1 point over
it and the area under the precision-recall curve (AUCPR). Results at the IR 1:50,
depicted in Figure 2.a), indicate that mirDNN reached the best performance with
maximum F1 = 0.74 and AUCPR = 0.79. The second best method was deeSOM, with
F1 = 0.51 and AUCPR = 0.46. Then OC-SVM had F1 = 0.39 and AUCPR = 0.34,
close to deeSOM performance and reaching better results at high recall (and very
low precision). For IRs of 1:100 and 1:200, the same general behaviour was observed,
where AUCPR of deeSOM and OC-SVM was affected by the imbalance (Figure 2.b
and Figure 2.c, respectively). From the analysis of all three imbalanced situations, it
can be seen that the optimal operation point, where F1 is maximum, remains almost
the same for mirDNN, with losses between 3-5% for different imbalances. However, F1

decreases for deeSOM (13-15%) and especially OC-SVM (≈30%) as imbalance rises.
This study has shown that methods using traditional features, such as OC-SVM and
deeSOM, have close performance at low IR and they can be severely affected by
imbalance. Also, it has shown that the mirDNN model can provide good accuracy
independently of the imbalance.

4.2 Interpretable predictions of pre-miRNAs in SARS-CoV-2
with deep learning

The identification of potential pre-miRNAs encoded in the SARS-CoV-2 genome was
performed with mirDNN, due to its best performance in the comparison of the previous
subsection. For each candidate sequence, the method gives a score indicating whether
it is a good miRNA precursor candidate (score close to 1) or not (score close to 0). In
the case of mirDNN, the activation level of the pre-miRNA output neuron is used as
a score.

The experimental validation of these computational predictions involved exploring
the read profiles in the regions of the virus genome covered by the predicted precursors
in the alignments of small RNA-seq samples (NCBI GSE148729 as described in Section
3). In this analysis, three of the top 5% candidates to pre-miRNAs found by the
pipeline proposed in this work have had significant expression in the infected cells and
a valid secondary structure in the hairpin (Merino et al., 2020).

The mirDNN model and its scores for the pre-miRNAs candidates with enough
expression in infected cells were analyzed in detail. The aim was to find out which
parts of those sequences were important for the deep model to give a high score.
The importance level of each nucleotide of the sequence for the prediction task was
measured as follows. First, each input sequence was evaluated with the already trained
mirDNN. This way the prediction output for each input sequence can be considered
as the reference score. Then, each nucleotide was masked, one-by-one, by converting
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Figure 3: Interpretable prediction of the sars cov2 26601-27201 stem-392-524 candi-
date sequence to pre-miRNA in SARS-CoV-2. (top) Importance given by mirDNN
to each nucleotide in the sequence. (middle) Experimental reads for this sequence,
average of two replicates of the biological experiment. Horizontal blue line indicating
the average reads count for the complete genome. (bottom) Corresponding secondary
structure predicted using RNAfold, in this case with two possible mature miRNAs
marked in red and green, respectively.

the corresponding column to an all-zeros vector. Finally, each masked version of the
input sequence was evaluated with the mirDNN, and the difference between the new
score and the reference score was used as a measure of the importance level of each
nucleotide. This is an important advantage of the mirDNN model over other models:
the importance of each individual nucleotide on the output can be characterized,
allowing the interpretability of the results. In the following, 2 examples of the attention
provided by the deep model to the sequences that have had enough expression are
analyzed in detail.

The first example of the coincidence between the importance given by the deep
model to the candidate sequence, and the experimental reads, is shown in Figure 3
for the sars cov2 26601-27201 stem-392-524 sequence. In the top of this Figure, it is
shown the importance that mirDNN has assigned to each nucleotide in the sequence.
The vertical axis on the left shows the importance levels of each nucleotide, while
the horizontal axis represents the nucleotides position within the sequence. It can be
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seen here that the deep model has given the highest importance to two sections in
the middle of the sequence. Figure 3 (middle) shows the corresponding experimental
reads average (two biological replicates) for this sequence after 24 hours upon infection
with the virus, with a horizontal blue line indicating the average reads count for the
complete genome. It is extremely interesting to see high expression in more than one
section of the sequence. There is a high coincidence between the deep model attention
zones and the regions of the sequence with high experimental reads. In particular, the
highest peak of reads around the position 50 is also the point of maximum importance
for the deep model. The zones with high reads, close to the central loop, can be
used afterwards for the determination of the mature position. The estimated mature
portion is the final miRNA molecule which has a biological function. Figure 3 (bottom)
shows the secondary structure corresponding to this pre-miRNA, with the two mature
miRNAs marked in red and green, respectively, according to the importance given by
mirDNN and confirmed with the experimental reads.

The second example is shown in Figure 4 for the sars cov2 101-701 stem-379-465
candidate to pre-miRNA. The top of the Figure presents the importance that mirDNN
has assigned to each nucleotide in the sequence. It can be seen here that the deep
model has given more importance to the zone around the first 25 nucleotides of the
sequence. Figure 4 (middle) shows the corresponding reads for this sequence. The
expression of this predicted pre-miRNA is clearly seen here according to the notable
increase of the reads in the infected tissue at 24 hours upon infection. Remarkably,
the region pointed by the deep model shows high overlap with the portion of the
predicted pre-miRNA exhibiting a dynamic production of small RNAs during the
virus infection, detected by high-throughput sequencing. There is a high coincidence
between most parts of the deep model attention (particularly at the beginning) and the
zones of the sequence with high experimental reads. Finally, Figure 4 (bottom) shows
the secondary structure corresponding to this pre-miRNA, with its mature miRNA
marked in red, which was determined as in the other case according to the importance
given by mirDNN and confirmed with the experimental reads.

The next step, once the most likely mature miRNA derived from the pre-miRNA
has been determined, it is to predict the corresponding target genes for each of the
newly discovered mature miRNAs. After the analysis of the differentially expressed
genes and their corresponding functional enrichment, a biological hypothesis could be
proposed regarding their regulatory function during the novel coronavirus infection.
This will likely contribute to the understanding about how these multiple miRNA-
like molecules predicted from the SARS-CoV-2 genome may modulate the host tran-
scriptome upon infection, hopefully helping in the design of innovative strategies for
diagnosis and treatment of COVID-19.
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Figure 4: Interpretable prediction of the sars cov2 101-701 stem-379-465 candidate
sequence to pre-miRNA in SARS-CoV-2. (top) Importance given by mirDNN to each
nucleotide in the sequence. (middle) Experimental reads for this sequence, average of
two replicates of the biological experiment. Horizontal blue line indicating the average
reads count for the complete genome. (bottom) Corresponding secondary structure
predicted using RNAfold, with the mature miRNA marked in red.
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5 Discussion

It is important to highlight the advantages of ML models like the ones presented here
with respect to the algorithms that would normally be used in this scenario. Generally,
the first step when having a new genome for which there is no previous information
is to align it against genomes of already known closely-related species, in such a
way as to find coding and non-coding areas that are highly similar. To this end,
the biological community mainly uses sequence homology search, such as BLAST2.
However, this search approach has two major disadvantages. The first one is that
finding a similar sequence by alignment does not necessarily guarantee a relationship
with its molecular and biological functions. The second one is that it has a very limited
capacity to detect miRNA sequences and precursors with low similarity to the reference
set. Sequence homology search does not use any additional information from the
sequence, such as features (length, stems number, GC content, number of base-pairs,
number of nucleotides in the stem region, etc.), while ML models can capture and
learn from them. These disadvantages lead to a loss of generalizability in the search
for candidate sequences that have similar molecular functions, but differ substantially
in their sequences. Hence, ML algorithms emerged here as an advantageous choice
to overcome these limitations, identifying candidates by using features automatically
learnt from the training set with deep learning, and classifying according to the values
of the features and, moreover, their interactions.

The DL approach proposed here has two main advantages over classical methods:
generalization capability and automatic explainability of the predicted sequences. The
first one, by automatically extracting inherent characteristics of the data, the model
can find pre-miRNAs that are rare and their sequencs are different to those of well-
known in other species. The second advantage has to do with the capability of ana-
lyzing why an algorithm has given a certain score to a sequence. Instead of the match
score given by search or other ML methods, our deep model can provide a detailed
analysis, nucleotide by nucleotide, for making better global decisions. This allows us
to assess the attention given by the model to a certain region of each sequence, in
order to determine its most important part. This way, differently from classical ML
methods, the possibility of the existence of a biological function in the best-ranked
candidate sequences can be hypothesized to be validated and tested with more directed
wet-lab trials.

6 Conclusions

In this work we presented a novel approach based on machine learning to uncover
potential miRNA precursors hidden in the genome of the SARS-CoV-2, the agent of

2https://blast.ncbi.nlm.nih.gov
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COVID-19. The pipeline proposed allowed the prediction from the full raw genome
of the virus, without pre-processing. Several ML methods were compared inside the
pipeline for prediction, and a deep model has shown to be the best one for predict-
ing novel pre-miRNAs. This model is a deep convolutional neural network based on
residual learning, which is trained directly with raw RNA sequences, and their cor-
responding secondary structure. For each input sequence, the model gives a score
indicating whether it is a good miRNA precursor candidate or not, and explains the
decision providing the importance of each nucleotide in the input sequence. After
the prediction, the candidate sequences computationally predicted were also experi-
mentally validated with small RNA-seq data from SARS-CoV-2 infected human cells.
In this analysis, 3 of the top 5% candidates to pre-miRNAs found by the pipeline
proposed in this work have had significant expression in the infected cells and a valid
secondary structure in the hairpin. Therefore, the approach developed allows finding
novel pre-miRNAs upon the release of the viral genome sequence, even in the absence
of associated transcriptomics of infected cells. This could be of great help in future
similar emergencies to accelerate the understanding of the singularities of any viral
agent and for the development of novel therapies.

The ML approach proposed here has two main advantages over classical meth-
ods: generalization capability and interpretability for the analysis of the predicted
sequences. The pipeline allows the automatic extraction of inherent features from the
raw sequences, finding shared features more than just exact nucleotides. The deep
learning method can perform a very detailed analysis of a sequence, nucleotide by
nucleotide, in order to determine its active region with potential biological function.
The results demonstrate the usefulness of DL in the context of the current sanitary
crisis worldwide. Immediately after genome sequencing, high-confidence pre-miRNAs
candidates can be identified to speed up wet-lab trials, and help the fight against the
pandemic and the fast development of new treatments. Furthermore, this approach
can be replicated to other harmful RNA viruses that have not been fully characterized
yet.
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