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Abstract

Motivation: The importance of microRNAs (miRNAs) is widely recognized in the community nowadays be-
cause these short segments of RNA can play several roles in almost all biological processes. The computational
prediction of novel miRNAs involves training a classifier for identifying sequences having the highest chance of being
miRNA precursors (pre-miRNAs). The big issue with this task is that well-known pre-miRNAs are usually very
few in comparison to the hundreds of thousands of candidates sequences in a genome, which results in high class
imbalance. This imbalance has a strong influence on most standard classifiers, and if not properly addressed in the
model and the experiments, not only performance reported can be completely unrealistic, but also the classifier
will not be able to work properly for pre-miRNA prediction. Besides, another important issue is that for most of
the machine learning approaches already employed (supervised methods) it is necessary to have both positive and
negative examples. The selection of positive examples is straightforward (well-known pre-miRNAs). However, it
is very difficult to build a representative set of negative examples because they should be sequences with hairpin
structure that do not actually contain a pre-miRNA.
Results: This review provides a comprehensive study and comparative assessment of methods from these two ma-
chine learning (ML) approaches for dealing with the prediction of novel pre-miRNAs: supervised and unsupervised
training. We present and analyze the machine learning proposals that have appeared during the last 10 years in
literature. They have been compared in several prediction tasks involving two model genomes and increasing imbal-
ance levels. This work provides a review of existing ML approaches for pre-miRNA prediction and fair comparisons
of the classifiers with same features and data sets, instead of just a revision of published software tools. The results
and the discussion can help the community to select the most adequate bioinformatics approach according to the
prediction task at hand. The comparative results obtained suggest that from low to mid imbalance levels between
classes, supervised methods can be the best. However, at very high imbalance levels, closer to real case scenarios,
models including unsupervised and deep learning can provide better performance.
Availability: http://sourceforge.net/projects/sourcesinc/files/ml4mirna/
Supplementary information: Supplementary data are available at Briefings in Bioinformatics online.

1 INTRODUCTION

MicroRNAs (miRNAs) are a special type of non-coding RNA of 21 nucleotides in length, which function in the
post-transcriptional regulation of gene expression. Since their discovery, and without any doubt, they have reshaped
the community appreciation on gene regulation. They may determine the genetic expression of cells and influence
the state of the tissues [1]. Therefore, discovering new miRNAs, identifying their targets and further inferring
their functions are necessary tasks for understanding miRNAs and their roles in genes regulation. Given their
important role in promoting or inhibiting certain diseases and infections, the discovery of new miRNAs is of high
interest today [2, 3], for example for developing biomarkers and targeted drug delivery [4, 5]. Precursors of miRNAs
generated during biogenesis have a well-known RNA secondary structure, which has allowed the development of
computational algorithms for their identification. They are named pre-miRNAs and are also known as hairpins. The
pre-miRNAs typically exhibit a stem-loop structure with few internal loops or asymmetric bulges. However, a large
amount of hairpin-like structures can be found in a genome. Due to the difficulty in systematically detecting pre-
miRNAs by existing experimental techniques, which are inefficient and costly, deep sequencing [6] and computational
based methods have played an increasingly important role for their prediction [7, 8]. Indeed, in the last decade
many different approaches have appeared for the computational prediction of pre-miRNAs: homologous search,
comparative genomics and machine learning. Although the first two kinds of methods can accurately identify
miRNAs, they cannot identify those non-homologous or species-specific miRNAs, because they depend mainly on
sequence conservation among multiple (possibly related) species.

Under the machine learning (ML) category, there is a large number of methods that use only RNA sequences as
input data [7, 9, 10]. That is to say, the RNA is cut and to represent each sequence, features are extracted, among
which sequence length can be included. Predictions are based on the inherent characteristics of the sequences and
secondary structure of these types of molecules, to identify hairpin structures in non-coding and non-repetitive
regions of a genome. Well-known pre-miRNAs, such as those included in miRBase [11], are used during the training
process as positive samples. To date, more than 25,000 mature miRNAs have been reported in 193 species (miRBase,
release 19).

Most of the published approaches deal with positive class and negative class data [12–19]. In these works, in
order to train supervised classifiers and measure sensitivity and specificity in a cross-validation scheme, a reduced
subset of negative examples must be artificially defined, with a pre-defined class imbalance. A set of sequences
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with hairpin structures that do not contain miRNAs, for example some mRNAs, tRNAs, and rRNAs, are generally
used as negative training set. These sets are used to train a predictor that should distinguish between presumed
false and true pre-miRNA sequences. Main strategies used to build a negative set are: under-sampling the large
set of unknown sequences; pseudo hairpins artificially created [20]; or randomly generating sequences with the
same length than the positive set [21]. However, how to accurately distinguish between true de-novo pre-miRNAs
and negative cases still remains an important challenge, and a careful choice of the negative dataset is crucial for
supervised methods, in order to produce good and reliable predictions [10, 13]. A very small number of methods
identify pre-miRNAs in an unsupervised fashion [22–26]. Basically, these methods apply clustering and then use
the labels of the well-known pre-miRNAs, only after training, and just to select the clusters where look for novel
pre-miRNAs.They obtain a high number of initial candidates, in the order of hundreds of thousands or tens of
thousands sequences. After that, a reduced list of best candidates can be selected by applying ad-hoc rules in order
to achieve a number of sequences that can be validated experimentally.

A very recent study has shown [27] that the computational prediction of pre-miRNAs is yet far-away from being
satisfactory solved. The main reason is that, in spite of several existing reviews [28–31] and all the comparative
works already published in the area, those are mostly centered in the revision of available prediction software or web
servers. With our work, instead, we want to provide to the bioinformatics community a much more fundamental
and conceptual review of existing computational ML approaches for pre-miRNA prediction. It has not been defined
yet the most suitable machine learning approach to be applied for prediction. In other words, which type of learning
paradigm should be applied in order to really tackle the true issue beneath the prediction in genome-wide data:
the very large class imbalance.

In this review we compare and discuss the supervised and unsupervised ML paradigms, in deep, when dealing
with the high class imbalance and the lack of definition for the negative set in pre-miRNA prediction. We will explain
and analyze each method, providing also practical comparative results. In this comprehensive study we provide
detailed analysis, in the same exactly experimental conditions and for a wide range of possible class imbalances, in
order to provide a useful guide for the bioinformatics community regarding future software development for in-silico
prediction of novel pre-miRNAs. The strong points of the comprehensive comparison we offer are the following:
i) a methodologically rigorous and fair comparative evaluation of the most important ML approaches; ii) a deep
analysis of the behavior and robustness of each ML algorithm in front of increasing class imbalance levels; iii) and
to strongly support the comparative analysis from a rigorous experimental methodology, the ML methods were
compared by using the same computer language and exactly the same data sets, with the same varying levels of
imbalance and cross validation. All source code and datasets are available for full reproducibility.

2 MACHINE LEARNING APPROACHES

The first ML methods proposed for miRNA prediction have used simple representations to extract the main struc-
tural features of known pre-miRNAs [7]. Then, a binary classifier is trained in order to identify other sequences
highly likely to be miRNA precursors. Among all possible supervised classifiers, support vector machines have been
the first and most widely applied algorithm for this task [12], followed by random forest, k nearest neighbor and
naive bayes (see Table 1).

A classical supervised approach needs both positive (real well-known pre-miRNA) and negative (pseudo and
artificial non-pre-miRNA) sequences in order to build a binary classifier for discriminating between them. Thus, in
supervised learning, the labels of the two-classes must be all known beforehand. Let be m training samples as n-
dimensional vectors xi = [xi1, ..., xin]T such that L = {(xi, yi)}; i = 1, . . . ,m, where xi ∈ Rn and yi ∈ {−1,+1},
are the response variables. Given a set of points each of which belongs to one of two possible classes, a supervised
algorithm constructs a model capable of predicting whether a new point (whose class is previously unknown) belongs
to one class or the other.

The k nearest neighbor (KNN) is a method that stores all the training examples as the classification model
[32], without actually building a parametric model. It is the simplest classifier and an example of a lazy learner, in
which all computation occurs at classification time (without training). It does not have to fit a model to the data.
The probability that a point p(x) falls within a volume V centered at point x is given by π =

∫
V
p(x)dx, where

the integral is over the volume V . For a small volume π ∼ p(x)V , the probability π may be approximated by the
proportion of samples falling within V . If k is the number of samples falling within V , out of a total of m, π ∼ k/m,
thus p(x) ∼ k/mV . From a bayesian point of view we are interested in obtaining the posterior p(yj |x) for each class
j. This is done by growing a region around a point x until it includes k neighbors, with a volume V , and within the
k neighbors there are kj samples from class yj . The joint probability will be p(x, yj) = kj/mV , with m the number
of data points, and thus the posterior will be p(yj |x) = p(x, yj)/

∑
i p(x, yi) = kj/k. For a given test example z,

the decision rule is to assign z to the class that has maximum a posteriori probability, y(z) = arg maxj{p(yj(z))},
which is the same as the one that receives the largest votes kj among the k nearest neighbors of z [33]. Standard
KNN has not actually been used for pre-miRNAs prediction. In [25] the authors have seen that known precursors
tend to concentrate in a particular region of the feature space. Thus, they proposed to take the coordinates of all
known precursors in order to set a distance range to identify the closest candidates, instead of assigning a class
label according to the k nearest neighbors. This allows different pre-miRNA structural clusters to emerge around
the known precursors. The number of candidates that are included in the acceptance region is controlled by the
maximum distance allowed to the closest pre-miRNA (and not by the k parameter as in standard KNN).

Naive Bayes (NB) classifiers are a family of simple probabilistic classifiers based on applying Bayes’ theorem
[32, 34] with strong assumptions of independence between the features. It calculates the probability that a given
example belongs to a certain class, making the simplifying assumption that the features constituting the instance
are conditionally independent given the class. Given an example x, one looks for a class yj that maximizes the
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likelihood p(x|yj) = p(x1, ..., xn|yj). The (naive) assumption of conditional independence among the features,
given the class, allows to express this conditional probability p(x|yj) as a product of simpler probabilities p(x|yj) =∏n

i=1 p(xi|yj). In this way, a NB classifier is the function that assigns to an unknown input z, a class label
y(z) = arg maxj{p(yj)

∏n
i=1 p(zi|yj)}, where the posterior is proportional to product of the prior p(yj) and the

conditional probability p(z|yj). A standard NB classifier has been used in [35] for automatically generating a
model from sequence and structure information from a variety of species. This model, together with a balanced
distribution of the data, has helped to reduce the false positive rate. Another work [17] has also used a classical
NB classifier to identify the location and starting position of human mature miRNAs candidates based on sequence
and secondary structure information of miRNA precursors.

Support vector machines (SVMs) are binary classifiers originally proposed by Vapnik [36]. SVMs can efficiently
perform classification by using the so-called kernel trick, implicitly mapping the inputs into high dimensional
feature spaces. SVM separates the classes in the training data by looking for the optimal separating hyper-plane
with a maximal margin between the class +1 and the class −1 samples. For this two-classes problem, assumed
as linearly separable in a mapped domain, a linear machine can be used as y(x) = wTφ(x) + b, where w is a
weight vector and b is a bias, which defines a separation hyperplane. Suppose that we are looking for the optimal
parameters {w, b} such as the margin is maximized. This problem can be stated as minimizing the lagrangian
equation L(w, b,a) = 1

2
||w||2 −

∑m
i=1 ai

{
yi
(
wTφ(x) + b

)
− 1
}

, where a is a vector of lagrange multipliers, with
ai ≥ 0 ∀i. This is a convex quadratic optimization problem which can be solved in a dual formulation with the
kernel kf (xi,xj) = φ(xi)

Tφ(xj) by using the Karush-Kuhn-Tucker conditions [37, 38]. The vectors xi for which
the corresponding ai are not zero are called support vectors, and they are the ones that define the separating
hyperplane. For a never seen data z, the output of the classifier is given by y(z) = sgn

(∑
i∈S aiyikf (x,xi) + b

)
,

where S is the set of support vectors. SVM has been widely used in bioinformatics [6, 39]. It has been the first
computational method used for pre-miRNA prediction [9, 12]. It is still the one most widely applied in its standard
form with radial basis function (gaussian) kernels and default parameters [13, 14, 40–52], with varying feature
sets and genomes. In [44], a standard SVM has been applied together with a classical ML strategy for balancing
imbalanced data sets [53] with the advantage in that case of improving the performance of the classical classifier. In
[50], a standard SVM has been used as well, but together with a feature selection step based on genetic algorithms.
In [43] three classical SVM models are applied sequentially, like filters, for increasing the specificity of predictions.
In [42] an ensemble of SVM has been tried, also to improve performance. It is already well-known in ML that
ensembles are superior to single classifiers. That is why in this study we have included ensemble of classifiers in the
comparisons.

Ensembles of classifiers have been widely applied with success to genomics data for prediction and classification,
variable selection, pathway analysis, genetic association and epistasis detection. The most popular and proven
powerful classifier ensemble is random forest (RF), which is an ensemble of decision trees [54, 55]. A tree classifier
consists in a number of nodes starting from a root node. At each node, the training set for that node, D, is split into
two non overlapping sets Dl and Dr: a feature k is selected, and for that feature a threshold θk is choosen such that if
xk ≤ θk the sample x is assigned to Dl, or is assigned to Dr otherwise [56]. The tree is grown until maximum depth
is reached. For the prediction of a new case z, it is pushed down the tree. It is then assigned as output h(z) the label
of the terminal node where it ends. Since individual decision trees tend to overfit, usually bootstrap-aggregated
(bagged) decision trees are used to combine the results of many trees. The final decision for an unknown input
vector z using the ensemble of J trees (the RF model) is made by the rule y(z) = arg maxwk

∑
j I(hj(z) = wk),

where yj(z) is the output assigned to the pattern by the j-th tree in the ensemble. For pre-miRNA prediction, in
[57] authors proposed a combination of a set of standard base algorithms such as SVM and KNN, aggregating their
prediction through a classical voting system. Similarly, in [58] it is proposed a bagging ensemble, that is to say, a
committee of complementary base classifiers that learns from different training subsets. Actually, miPred [15] was
the first truly ensemble method (RF) proposed, which achieved high discriminative power for human pre-miRNAs.
More recently, HuntMi [18] performed a complete study comparing many standard supervised methods (NB, SVM
and RF), where RF was confirmed to be the best one for the identification of new pre-miRNAs in animals, plants
and viruses.

In unsupervised ML methods, no target variable is provided during learning. Instead, the algorithm searches for
patterns and hidden structures or similarities among all the samples. The most common unsupervised method is
clustering [63]. Clustering refers to grouping records, observations or cases into classes of similar objects. A cluster
is a collection of data points that are similar to one another and dissimilar to data in other clusters. In order to use
an unsupervised model as a classifier, the class label of the positive samples are used, after training, for labeling
the clusters found. For example, for pre-miRNAs prediction, the clusters where there is at least one well-known
pre-miRNA are labeled as positive. The clusters that have only unlabeled sequences are labeled as negative class.
Therefore, for finding candidates to novel pre-miRNAs, only the unlabeled sequences clustered together with the
labeled ones have to be looked at. The most popular and widely known unsupervised algorithms are hierarchical
clustering, k-means, self-organizing maps and spectral clustering, although they have not been widely applied for
pre-miRNA predictions (see Table 1).

Hierarchical clustering (HC) is one of the simplest and most popular unsupervised method in post-genomic data
analyses [64]. It clusters data by forming a tree diagram or dendrogram, which shows the relationships between
samples according to a distance measure. The root node of the dendrogram represents the whole data set, and
each leaf is regarded as a data point. The clusters are obtained by cutting the dendrogram at different levels [65].
Agglomerative HC starts with m singleton clusters Gi, each of which includes exactly one data point, Gi = {xi}.
The distance among two clusters Gi and Gj is defined as the minimum distance between all possible pairs of
members of the clusters, d(Gi, Gj) = min∀xp∈Gi,xq∈Gj ||xp −xq||. The algorithm then successively merges clusters
by selecting the two with minimum distance and iterating this procedure until all samples belong to the same
cluster. In [25], a standard agglomerative HC was used to perform clustering over the candidate structures along
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with known pre-miRNA structures. This way, mixed clusters allow the identification of candidates that are similar
to well-known precursors. HC has been applied in [26], not for the discovery of novel pre-miRNAs but for the
mapping of validated miRNAs in one species to their most likely orthologues in other species. That is to say, it
has been used as tool for automated miRNA mapping across and within species, through sequence similarity and
secondary structure.

The k-means (KM) algorithm is one of the best known and most popular clustering algorithm [66]. It begins
by assigning k centroids to data points randomly chosen from the training set, ci = xrnd(1,...,N). At each iteration,
a data points xj is classified by assigning it to the cluster Gi whose centroid ci is the closest one, that is i∗j =
arg min∀i{‖ci − xj‖}. Then, new cluster centroids are computed as the average of all the points belonging to each
cluster. This process continues for each xj ∈ L until both, the cluster centroids and the class assignments, no
longer change. To the best of our knowledge there are no published proposals for pre-miRNA prediction with KM.
It has been included in this study for completeness, since it is the most used and cited clustering method over the
last 50 years [66].

In recent years, spectral clustering (SC) has become one of the most popular and modern clustering algorithms
[71]. SC considers each sample xk as a vertex in a graph and weights the connections between samples with some
measure of similarity [72]. This measure can be coded in a weight matrix S, where the entry sij represents the
strength of the connection between samples xi and xj . The similarity between samples is usually measured as sij =
s(xi,xj) = exp

(
−||xi − xj ||2/(2σ2)

)
. From the weight matrix S, a graph laplacian is built as L = D−S, where D

is a diagonal matrix with dii =
∑m

j=1 sij . Then, this unnormalized laplacian is normalized as LN = D−1/2LD−1/2.
The next step is computing the k smallest eigenvectors of LN and store them as columns in a matrix U . This
matrix results of size m by k. That is, the rows of U can be interpreted as data points x̂i ∈ Rk, which can be now
clustered with any clustering algorithm. Similarly as for KM, there are no published works on SC-based pre-miRNA
prediction. This algorithm has only been used in this area in [24] for clustering miRNAs with similar function.

SOMs are a special class of neural networks that use unsupervised learning, based on the idea of neurons that
compete in response to a given input [67]. The training begins by choosing random weights wij ∈ [−0.5,+0.5] for
each neuron in the map. Given an input sample, its distance to each neuron weights is computed and the winning
neuron for this data sample is looked by i∗j = arg min∀i {‖wi − xj‖}. The weight vector of this winning neuron (and
a number of its neighbors) is further moved with wi = wi + η (xr −wi) , ∀i ∈ Nc, where Nc is a set of neighboring
neurons of the winning neuron, and η the learning rate [68]. This is repeated until no significant changes in weights
are performed. SOMs have the capability of identifying similar input patterns in the feature space, by assigning
them to the same neuron or a group of adjacent neurons on the map [69, 70]. The first SOM proposed for pre-
miRNA prediction has appeared very recently in [22]. In [23], a deepSOM architecture with several levels of hidden
SOMs was proposed, where each inner SOM discards bad candidates to pre-miRNAs. Only best candidates survive
to the next SOM level. The size of the maps in the topology and the number of layers are automatically adjusted
according to the data samples in each level. At the last level, the unlabeled data in the neurons having clustered
(at least) one well-known labeled sample are identified as the best pre-miRNAs candidates.

A deep neural network (deepNN) can be built from several layers of nonlinear feedforward networks. Layers that
are commonly used in deep learning include latent variables organized layer-wise in deep generative models such as
the restricted Boltzmann machines (RBM) [59]. A single RBM consists of a layer that receives the input vectors
x, and has a set of connection weights wij in a hidden layer of neurons with activation outputs h = [h1, ..., hP ].
The joint distribution of hidden variables h and observation samples x can be written as p(x,h) ∝ e−E(x,h), where
E(x,h) = hTWx + bTx + cTh is the energy function, W is the weight matrix, and b and c are bias vectors for
the input and the hidden layer. The parameters {W, b, c} can be learnt by an unsupervised algorithm based on
Gibbs sampling [59]. After this unsupervised stage, a supervised training is applied and therefore this model uses
an hybrid learning approach. It has been shown that RBMs have the universal approximation property [60]. Very
recently, in [61, 62] a deepNN for pre-miRNA prediction was proposed. It consists of three hidden layers, each pre-
trained as a RBM. For the first hidden layer, the input patterns x are used to produce an internal representation
h′. Once the parameters of this network are trained, a second layer is trained using the h′ as input and producing
a second hidden layer h′′. This is repeated to produce h′′′. Then, a final standard feedforward output layer trained
by error backpropagation is added, which predicts the class labels.

3 MATERIALS AND PERFORMANCE MEASURES

3.1 Data sets

Selecting an informative feature set is very important for the pre-miRNA prediction, and most commonly used
feature sets contain information about sequence, topology and structure [73]. The earliest work in this field proposed
features named triplets, computed from the sequence itself [12]. miPred [15] was the first method that proposed
a representative feature set with great discriminative power, adopted by most other methods [18]. Thus, we have
used them in this study: triplets, maximal length of the amino acid string, cumulative size of internal loops found
in the secondary structure, and percentage of low complexity regions detected in the sequence. The features have
been normalized with z-score.

For this study we have created a number of datasets of varying levels of class imbalance using already available
public data [18], which provide a negative class and a positive class with all well-known pre-miRNAs in miRBase v17
[11] for Homo sapiens (1,406 positive and 81,228 negative samples) and Arabidopsis thaliana (231 positive and 28,359
negative samples). Differently from most published reviews, in this work we focus on providing a broad spectrum of
comparative results for ML methods regarding the large class imbalance issue, allowing a comprehensive assessment
of the supervised versus unsupervised approaches at increasing imbalance levels. Thus, different artificial imbalance
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ratios (IR) (defined as the ratio of negative to positive class samples) have been produced for this comparative study
by randomly varying the number of available elements in each class, ranging from 1:1 (no imbalance) up to 1:2,000
(very high imbalance).

A classical ML strategy for balancing imbalanced data sets (for the supervised models) has been evaluated as
well: the synthetic minority oversampling technique (SMOTE) [53], which is an approach for oversampling the
minority class. In fact, SMOTE is the most used technique nowadays in supervised pre-miRNA classifiers [74]. It
is limited to the strict assumption that the local space between any two positive instances is positive. SMOTE first
randomly selects several nearest neighbors of a minority class instance, and produces new instances based on linear
interpolations between the original examples and the randomly selected nearest neighbors. It produces artificial
samples as convex combinations of each positive sample and one of its nearest neighbors.

3.2 Measures

The prediction quality of each model was assessed by the following classical classification measures: sensitivity (s+),
specificity (s−), precision (p), and harmonic mean of sensitivity and precision (F1)

s+ =
TP

TP + FN
, p =

TP

TP + FP
,

s− =
TN

TN + FP
, F1 = 2

s+p

s+ + p
,

where TP , TN , FP and FN are the number of true positive, true negative, false positive and false negative
classifications, respectively.

The s+ measures how good is a classification method at recognizing (and not missing) the true positives. The
s−, instead, measures the recognized true negatives. The precision p measures the relation between true positives
and false positives, which in this large imbalance context is very important because false positives, regardless of
being just a fraction of the total of negatives, are a very large number of samples in comparison to true positives.
This is of relevance especially when thinking in a realistic scenario. Considering the characteristics of the prediction
under study and given the large class imbalances, it is important to take into account both sensitivity and the
number of false positives. Therefore, F1, being the harmonic score between precision and recall, is used as a global
comparative measure among many prediction methods.

For each ML model tested, a stratified 10-fold cross validation (CV) procedure has been used, giving reliable
estimates of classification performance. Each model hyperparameters were determined with an inner grid search
of a range of possible values, within each training partition. In the case of supervised methods, hyperparameters
are, for example, the number of neighbors in KNN or the number of layers and neurons in deepNN. In the case
of unsupervised models, the corresponding hyperparameter is number of clusters. If a small number of clusters is
used, the larger the clusters the more likely it is that they include a well-known positive. However, at the same
time, more false positives can be obtained and precision falls. Therefore, there is a trade-off between sensibility
and precision when clusters grow.

The performance in each experiment is reported as the average values on 10 folds for the test partitions only.
In order to statistically evaluate the differences between classifiers, that is, to detect differences in methods across
multiple imbalanced data sets, a Friedman rank test at significance level α = 0.05 is carried out for F1. After that,
the Nemenyi test will be used as a post-hoc test in order to show which methods are significantly different from
each other according to the mean rank differences of the groups [75].

4 RESULTS

4.1 Supervised models performance

Table 2 and 3 show the results after testing all the supervised ML approaches included in this review, ranging from
very low to very high class imbalance; without and with SMOTE for class balancing, respectively. It can be seen
that in both tables and all cases, in both datasets and for all methods, the s− (true negative rate) is always very
high, above 95.00%. In most cases and for most classifiers, it is around 99.00%. This is an expected as well as a
useless result, because due to the existing large class imbalance and the abundace of negative cases, any classifier
could be good to accurately detect the negative cases just by always predicting “negative class” at the output.
This is not useful, however, from a practical point of view, since the true interest is in the minority (positive) class.
Actually, looking at the s+ (true positive rate) and p together, or the global measure F1, is where one can really
understand how hard this problem is, as imbalance increases.

In Table 2, it can be clearly seen how imbalance has a direct (and negative) impact on all the supervised
classifiers performance, in particular for SVM that is the most widely used in literature. For example, for SVM in
H. sapiens and very low class imbalance (1:1 to 1:50), s+ goes from 96.14% to 66.21%. It keeps decreasing up to
an extremely low value of less than 10% at the highest imbalance level (1:2,000). This means that most positive
samples (well-known pre-miRNAs) will not be correctly recognized with this method at such high imbalance level.
The SVM precision begins at a high 96.79% but then it decreases, reaching an extremely low p of 20.00% at the
highest imbalance because there are many false positives returned by SVM at this level. It should be mentioned
that this really bad performance would not be, however, correctly reported if accuracy had been calculated (as
many published work do), since it is a performance measure that is biased towards the majority class and does not
take into account p and s+ together. Instead, F1, that takes into account p and s+ together, correctly reflects this
performance decrease as imbalance growths, showing how SVMs can have, in a very large imbalance situation a
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very poor global performance. In A. thaliana, similar conclusions can be achieved for SVM, s− is always high; s+ is
high (around 80.00-90.00%) at low imbalance but at medium and high imbalance levels (from 1:50 on) it goes down
to less than 50.00%. At the extremes, from 1:500 and on, s+ has diminished to unacceptable levels. Regarding
precision of SVM, it has been maintained higher than 90.00% values up to imbalance 1:200; being however extremely
poor after 1:500, meaning that it has identified a very large number of false positives. This is correctly reflected by
F1 with values quite below 50.00%.

In Table 3, the use of SMOTE for artificial class balancing has not significantly improved SVM performance.
It can be stated that it has had a little impact at the highest imbalance levels, depending on the training data set,
or it has even made it worse. In any case, the global performance F1 is unacceptable, below 50.00%. This can be
explained by the fact that SMOTE is interpolating positive samples as intermediate points between the known ones,
where many of them are located very close to the other class samples. This artificial balance is not helping setting
the support vectors in a better position in the decision frontier between classes. Due to the existing very high class
imbalance, the hypothesis that the local space between two near positive samples corresponds to a positive class
sample does not hold, especially if the boundary between classes is complex. When this is the case, the support
vectors located in a region full of samples from the opposite class produce very bad test results. In fact, this can
be very clearly seen in the Figure 1 of the Supplementary Material.

For the KNN classifier a similar analysis can be done. In Table 2, without SMOTE, at low imbalance levels
(up to 1:10), all measures are very high in both datasets; between 86.00% and 96.00%. But at mid-level imbalance
(1:100), for example in H. sapiens, it has already decreased performance to 66.00% in s+ and around 40.00% at the
highest class imbalance. The same with p. The global F1 decreases very much as well with increasing imbalance,
from 96.00% down to around 45.00%. In the A. thaliana data set, the performance values are slightly better up
to imbalance 1:200, being all of them of around 56.00% at the highest imbalance. When SMOTE is applied to a
KNN classifier (in Table 3), it has only a noticeable influence on s+ at the very high imbalance levels, raising just a
10.00-20.00% more the performance values. Global performance F1 is around 45.00-50.00% for the H. sapiens data
set, and around 60.00-65.00% in A. thaliana.

Regarding RF in human data set without SMOTE (in Table 2), it has very high s+, p and F1 (74.00% and
higher, up to 97.00%) at the very low imbalance levels (1:1 to 1:50). Then, when imbalance increases, it is more
difficult to distinguish true positive from false positives. These rates diminish significatively in the middle-imbalance
cases to 53.75% for s+ and 86.23% for p at 1:500. This means that here RF can still have an acceptable precision
(low number of false positives), but at the cost of missing (mis-classifying) half of the true positives. However, at
a very large imbalance level (1:1,000 and 1:2,000) RF does not work properly anymore; s+ is as low as 25.00% and
p is 56.67%, meaning that this classifier is not capable of recognizing true samples. It suffers from overfitting of
the negative class due to the large imbalance in data. In fact, this is perfectly reflected by F1, which has very high
values at the low imbalance
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situations (90.00-96.00%), and then falls below 50.00% as imbalance increases much more. In the other dataset,
the trend and global behavior is the same for RF. The use of SMOTE in RF (Table 3) is a little bit helpful at the
highest imbalance, rising s+ and p in H. sapiens; however for A. thaliana SMOTE does not help at all. A similar
explanation to the use of SMOTE with SVM can be applied here as well, with SMOTE inducing changes in the
decision boundary that are undesirable because there are artificial positive samples in the negative region.

NB has obtained the best results among the supervised methods evaluated regarding s+, from mid to high
imbalance ratio. For example, in H. sapiens, the s+ of NB is higher than 80.00-90.00% even at the highest
imbalance level, with and without SMOTE, apparently showing robustness to large class imbalance. It can be
stated that it almost seems to be unaffected by the IR regarding true positives recognition. However, when looking
at the precision p, extremely low values can be seen for high imbalances (1:500 and 1:1,000) in both data sets. Low
values, less than 10.00% even with SMOTE, are observed. That seems to be the price to pay for high sensitivity:
a very large number of false positives. This fact is correctly reflected by the global measure F1, with values below
10.00-20.00% at the extreme imbalance, without real practical use.

Finally, the hybrid deepNN predictor behaved similarly to the other supervised models. Very high s− is achieved
no matter the imbalance ratio in both genomes. High s+ is provided in low and mid range imbalance, with poor
performance in the highest imbalance levels, which means not recognizing true positives. For example, in H. sapiens,
at the highest imbalance level 80% of the true positives are lost; for A. thaliana, true positives are not recognized
at all. These facts lead to very poor values in F1 at the highest imbalance here evaluated. When SMOTE is used
for balancing, the results improve in s+, p and F1, in particular at the highest imbalance levels. While these very
recent neural models are being applied with success in many areas, and for pre-miRNA prediction have shown to
be among the best models, deep neural networks have to be applied with caution in front of high class imbalance
and more research is required to reach acceptable levels of performance.

4.2 Unsupervised models performance

Regarding the unsupervised ML methods in Table 4, for s− (true negative rate), the same conclusions as before can
be achieved in all cases in both datasets and for all methods: it is very high even at high imbalances, with values
between 80.00% and 99.00%. This is however very misleading when true positive rate and precision are analyzed
more deeply. Regarding the recognition of true positives (s+) all the methods are equally very good at low and mid
class imbalance (1:1 to 1:50), in both datasets, with high values, between 83% and 99%. Only very large imbalance,
larger than 1:200, impacts on s+ for SOM, HC and SC. In the A. thaliana data set, both KM and SOM maintain
a very high sensitivity of 90.00% at the worst imbalance level.

In the case of KM, the s+ is the highest of all unsupervised methods at the highest imbalance level, being 92.50%
for H. sapiens and 90.00% for A. thaliana. Furthermore, it could be stated that increasing imbalance has no effect on
this method when used as classifier because high performance is maintained for positive class recognition. However,
precision is really bad, lower than 65.00% in low to mid imbalance and less than 5.00% at the highest imbalance,
meaning that in the KM labeled clusters there is a very large amount of false positives. In fact, F1 is very low for
the mid-to-high imbalance levels, being less than 5.00% for KM in both data sets. For this method, it can be said
that it will almost never miss a true candidate but many false candidates will be predicted as well.

SC has a very similar behavior to KM, thus an analogous analysis can be done. It is very good for recognizing
true miRNAs at low or no imbalance, though having a very bad performance at the highest imbalance levels, with
modest sensitivity and very low precision. For example, in human it has a true positive rate s+ between 86.00%
and 99.00% up to 1:200, falling to 60.00% when data imbalance is increased ten times. In the other data set, the
drop is up to 60.00% as well. The same happens with SC precision: it is extremely low (less than 5.00%) at mid to
high imbalances because it has a large number of false positives. F1 reflects this fact with very poor results, indeed.
The same happens in both data set.

Instead, SOM and HC have more balanced results in both s+ and p, being equally good in both datasets at the
low to middle imbalance levels. For example, SOM in A. thaliana maintains an always high s+, from no imbalance
to the extreme 1:1,500 imbalance level. It can be stated that this model is capable of maintaining very high true
positives recognition, higher than 80.00%, no matter the imbalance present in data. The precision falls from around
94.00% to 21.00% of course, as imbalance increases, being however more than 10 times better than KM and SC.
The F1 of SOM in this data set at 1:2,000 is 26.86%, the second best global value, after HC, in comparison to
all other unsupervised approaches evaluated. The F1 of SOM in the human data set is the best one of all at the
extreme 1:2,000.

HC, in the imbalance range from 1:1 to 1:100 in both data sets has high values in true positive rates and
precision, and in the global F1 measure as well. It is the best method also for the arabidopsis data set regarding
precision and F1 from mid to high imbalance level. For the mid-range it presents very good global F1 performance
around 75.00% in A. thaliana. At high class imbalance, however, it is affected but it preserves good precision,
around 36.00-20.00%. This is reflected with a F1 of approximately 30.00-44.00% in both data sets at the extreme
1:2,000 imbalance evaluated.

Finally, the deepSOM model is the best of all unsupervised models. This deep topology of SOMs appears as
the most robust model in front of the diverse imbalance levels evaluated and for performance indexes measured.
As happens with all other models, s− is close to 100.00% in almost all cases and both genomes. At the highest
imbalance levels, sensitivity remains higher than 60.00% in H. sapiens up to 1:500. After that levels, it is affected
by the imbalance but still recognizing with acceptable precision. In the case of the A. thaliana genome, this balance
between not loosing true positives and not having too much false positives is the best possible, beating all other
unsupervised models, and even most of the supervised ones. The F1 for deepSOM at the extreme imbalance case
is the best result achieved in the Table 4.

8

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

G
. S

te
gm

ay
er

, L
. D

i P
er

si
a,

 M
. R

ub
io

lo
, M

. G
er

ar
d,

 M
. P

iv
id

or
i, 

C
. Y

on
es

, L
. A

. B
ug

no
n,

 T
. R

od
ri

gu
ez

, J
. R

aa
d 

&
 D

. H
. M

ilo
ne

; "
Pr

ed
ic

tin
g 

no
ve

l m
ic

ro
R

N
A

: a
 c

om
pr

eh
en

si
ve

 c
om

pa
ri

so
n 

of
 m

ac
hi

ne
 le

ar
ni

ng
 a

pp
ro

ac
he

s"
B

ri
ef

in
gs

 in
 B

io
in

fo
rm

at
ic

s,
 2

01
8.



T
ab

le
2:

S
u

p
er

v
is

ed
M

L
m

et
h

o
d

s
fo

r
p

re
-m

iR
N

A
p

re
d

ic
ti

o
n
.

H
.
sa
p
ie
n
s

Im
b

al
an

ce
S
V
M

K
N
N

R
F

N
B

d
e
e
p
N
N

(1
:I

R
)

s+
p

s−
F
1

s+
p

s−
F
1

s+
p

s−
F
1

s+
p

s−
F
1

s+
p

s−
F
1

1
96

.1
4

96
.7

9
96

.7
9

96
.4

5
96

.6
4

95
.7

0
95

.6
4

9
6
.1

7
9
6
.6

4
9
7
.0

1
9
7
.0

0
9
6
.8

2
9
2
.2

9
9
7
.1

5
9
7
.2

9
9
4
.6

4
9
5
.4

3
9
6
.7

8
9
6
.7

9
9
6
.0

7
5

89
.9

6
91

.1
7

98
.2

5
90

.4
7

88
.8

6
93

.3
1

98
.7

2
9
1
.0

0
9
1
.1

4
9
4
.8

2
9
9
.0

0
9
2
.9

3
9
1
.3

6
8
9
.3

1
9
7
.8

1
9
0
.2

9
9
2
.4

3
9
3
.2

1
9
8
.6

3
9
2
.7

7
10

84
.8

6
89

.1
4

98
.9

7
86

.9
3

86
.0

0
90

.1
2

99
.0

5
8
7
.9

9
8
6
.5

0
9
3
.2

0
9
9
.3

7
8
9
.7

0
9
0
.8

6
8
1
.2

3
9
7
.9

7
8
6
.0

4
8
7
.8

6
9
1
.4

1
9
9
.1

6
8
9
.4

9
50

66
.2

1
80

.4
3

99
.6

8
72

.5
8

36
.0

0
81

.8
2

99
.6

7
7
6
.9

4
7
3
.5

0
9
0
.1

0
9
9
.8

4
8
0
.9

1
8
7
.2

9
4
7
.6

6
9
8
.0

9
6
1
.6

5
7
5
.0

7
9
0
.0

2
9
9
.8

3
8
1
.7

9
10

0
52

.1
0

79
.0

8
99

.8
6

62
.6

4
66

.7
9

73
.4

9
99

.7
5

6
9
.8

2
6
6
.6

7
8
8
.6

0
9
9
.9

2
7
5
.9

2
8
7
.7

8
3
2
.8

9
9
8
.2

0
4
7
.8

2
7
5
.9

3
8
4
.3

9
9
9
.8

5
7
9
.6

0
20

0
32

.7
5

74
.2

8
99

.9
4

45
.1

5
59

.0
0

69
.2

3
99

.8
6

6
3
.0

6
5
9
.2

5
8
7
.2

9
9
9
.9

6
7
0
.3

5
8
6
.7

5
1
9
.1

5
9
8
.1

9
3
1
.3

6
6
3
.7

5
8
3
.0

9
9
9
.9

3
7
1
.0

5
50

0
15

.6
3

77
.0

0
99

.9
9

25
.1

1
51

.2
5

60
.9

6
99

.9
2

5
4
.1

5
5
3
.7

5
8
6
.2

3
9
9
.9

8
6
5
.2

1
8
9
.3

8
1
1
.3

6
9
8
.6

2
2
0
.1

6
6
0
.6

2
8
2
.8

7
9
9
.9

7
6
8
.0

5
10

00
7.

50
45

.0
0

99
.9

9
12

.6
7

41
.2

5
45

.9
4

99
.9

5
4
2
.4

8
3
3
.7

5
7
7
.1

7
9
9
.9

9
4
5
.9

3
8
6
.2

5
5
.8

0
9
8
.6

1
1
0
.8

6
4
8
.7

5
6
5
.1

4
9
9
.9

7
5
5
.0

2
15

00
10

.0
0

50
.0

0
10

0.
00

16
.6

7
46

.0
0

50
.9

6
99

.9
6

4
4
.1

2
3
4
.0

0
8
1
.3

3
1
0
0
.0

0
4
5
.1

4
9
4
.0

0
4
.9

9
9
8
.8

6
9
.4

6
4
4
.0

0
7
4
.3

3
9
9
.9

9
5
2
.0

8
20

00
5.

00
20

.0
0

10
0.

00
8.

00
42

.5
0

55
.8

3
99

.9
8

4
5
.7

1
2
5
.0

0
5
6
.6

7
9
9
.9

9
3
3
.7

1
9
5
.0

0
3
.5

4
9
8
.7

0
6
.8

2
2
0
.0

0
5
1
.6

7
9
9
.9

9
2
7
.7

1

A
.
th
a
li
a
n
a

Im
b

al
an

ce
S
V
M

K
N
N

R
F

N
B

d
e
e
p
N
N

(1
:I

R
)

s+
p

s−
F
1

s+
p

s−
F
1

s+
p

s−
F
1

s+
p

s−
F
1

s+
p

s−
F
1

1
89

.5
7

98
.3

0
98

.2
6

93
.4

8
95

.2
2

97
.1

0
96

.9
6

9
6
.0

3
9
5
.6

5
9
8
.2

8
9
8
.2

6
9
6
.9

1
9
2
.1

7
9
8
.2

0
9
8
.2

6
9
4
.9

8
9
3
.9

1
9
6
.9

9
9
6
.9

6
9
5
.3

4
5

77
.8

3
98

.2
1

99
.7

4
86

.3
7

93
.9

1
96

.5
4

99
.3

0
9
5
.0

5
9
3
.9

1
9
7
.9

3
9
9
.5

7
9
5
.7

3
9
0
.8

7
9
3
.1

9
9
8
.6

1
9
1
.8

3
9
1
.3

0
8
7
.3

3
9
7
.3

0
8
9
.0

6
10

69
.1

3
98

.7
6

99
.9

1
80

.9
6

92
.6

1
96

.5
0

99
.6

5
9
4
.4

5
9
2
.1

7
9
8
.2

6
9
9
.8

3
9
5
.0

4
9
0
.8

7
8
8
.5

1
9
8
.7

9
8
9
.5

8
8
9
.5

7
9
5
.7

9
9
9
.5

7
9
2
.2

7
50

47
.8

3
98

.4
2

99
.9

8
63

.3
7

90
.4

3
92

.9
9

99
.8

6
9
1
.6

4
8
6
.5

2
9
6
.9

4
9
9
.9

4
9
1
.1

0
8
9
.5

7
6
3
.8

4
9
8
.9

8
7
4
.4

2
8
6
.9

6
9
2
.1

6
9
9
.8

4
8
9
.2

7
10

0
38

.7
0

97
.5

5
99

.9
9

54
.6

2
83

.0
4

89
.6

8
99

.9
0

8
5
.9

0
8
3
.4

8
9
4
.4

1
9
9
.9

5
8
8
.1

9
8
8
.2

6
4
7
.5

9
9
9
.0

0
6
1
.6

0
9
1
.7

4
9
0
.8

7
9
9
.9

0
9
1
.0

9
20

0
27

.8
6

93
.3

3
99

.9
9

41
.2

9
85

.0
0

91
.1

0
99

.9
6

8
7
.7

2
7
8
.5

7
9
4
.6

6
9
9
.9

8
8
5
.4

8
8
7
.1

4
3
1
.7

2
9
9
.0

5
4
6
.3

4
8
5
.0

0
9
3
.2

2
9
9
.9

6
8
8
.3

5
50

0
8.

00
30

.0
0

10
0.

00
12

.3
8

76
.0

0
81

.3
1

99
.9

6
7
6
.6

2
6
8
.0

0
9
1
.8

3
9
9
.9

9
7
5
.9

6
7
8
.0

0
1
2
.8

0
9
9
.0

7
2
1
.9

0
5
6
.0

0
5
8
.8

3
9
9
.9

8
5
4
.3

6
10

00
0.

00
0.

00
10

0.
00

0.
00

65
.0

0
60

.0
0

99
.9

7
5
9
.0

0
4
0
.0

0
5
5
.0

0
9
9
.9

9
4
3
.3

3
6
5
.0

0
9
.1

3
9
9
.5

7
1
5
.9

5
7
0
.0

0
7
2
.3

3
9
9
.9

8
6
6
.7

2
15

00
0.

00
0.

00
10

0.
00

0.
00

60
.0

0
55

.0
0

99
.9

9
5
6
.6

7
5
0
.0

0
4
5
.0

0
9
9
.9

9
4
6
.6

7
6
0
.0

0
8
.9

2
9
9
.7

0
1
5
.3

4
0
.0

0
0
.0

0
1
0
0
.0

0
0
.0

0
20

00
0.

00
0.

00
10

0.
00

0.
00

60
.0

0
55

.0
0

99
.9

9
5
6
.6

7
4
0
.0

0
4
0
.0

0
9
9
.9

9
4
0
.0

0
7
0
.0

0
8
.6

4
9
9
.6

7
1
5
.1

2
0
.0

0
0
.0

0
1
0
0
.0

0
0
.0

0

9

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

G
. S

te
gm

ay
er

, L
. D

i P
er

si
a,

 M
. R

ub
io

lo
, M

. G
er

ar
d,

 M
. P

iv
id

or
i, 

C
. Y

on
es

, L
. A

. B
ug

no
n,

 T
. R

od
ri

gu
ez

, J
. R

aa
d 

&
 D

. H
. M

ilo
ne

; "
Pr

ed
ic

tin
g 

no
ve

l m
ic

ro
R

N
A

: a
 c

om
pr

eh
en

si
ve

 c
om

pa
ri

so
n 

of
 m

ac
hi

ne
 le

ar
ni

ng
 a

pp
ro

ac
he

s"
B

ri
ef

in
gs

 in
 B

io
in

fo
rm

at
ic

s,
 2

01
8.



T
ab

le
3:

S
u

p
er

v
is

ed
M

L
m

et
h

o
d

s
(w

it
h

S
M

O
T

E
)

fo
r

p
re

-m
iR

N
A

p
re

d
ic

ti
o
n

.
H
.
sa
p
ie
n
s

Im
b

al
an

ce
S
V
M

K
N
N

R
F

N
B

d
e
e
p
N
N

(1
:I

R
)

s+
p

s−
F
1

s+
p

s−
F
1

s+
p

s−
F
1

s+
p

s−
F
1

s+
p

s−
F
1

1
96

.1
4

96
.7

9
96

.7
9

96
.4

5
96

.6
4

95
.7

0
95

.6
4

9
6
.1

7
9
6
.6

4
9
7
.0

1
9
7
.0

0
9
6
.8

2
9
2
.2

9
9
7
.1

5
9
7
.2

9
9
4
.6

4
9
5
.3

6
9
6
.8

6
9
6
.8

6
9
6
.0

7
5

72
.5

7
95

.1
1

99
.2

5
82

.2
8

91
.1

4
85

.3
5

96
.8

7
8
8
.1

3
9
4
.0

0
9
1
.8

2
9
8
.3

2
9
2
.8

8
9
2
.1

4
8
9
.3

4
9
7
.8

0
9
0
.6

9
9
6
.0

7
8
6
.0

5
9
6
.8

4
9
0
.7

1
10

68
.4

3
92

.8
5

99
.4

7
78

.7
3

88
.9

3
79

.4
4

97
.7

0
8
3
.8

8
9
2
.8

6
8
7
.1

6
9
8
.6

3
8
9
.9

1
9
2
.0

7
8
1
.4

9
9
7
.9

2
8
6
.4

5
9
6
.0

7
7
6
.1

6
9
6
.9

4
8
4
.8

5
50

52
.6

4
87

.6
8

99
.8

5
65

.6
7

79
.3

6
61

.4
7

99
.0

0
6
9
.2

2
8
4
.7

1
7
3
.4

2
9
9
.3

9
7
8
.6

5
9
0
.4

3
4
5
.7

0
9
7
.8

6
6
0
.7

1
9
0
.2

9
5
4
.8

7
9
8
.4

9
6
8
.0

8
10

0
39

.6
3

85
.2

5
99

.9
3

53
.6

6
72

.8
4

53
.1

0
99

.3
5

6
1
.3

2
8
0
.6

2
6
9
.3

1
9
9
.6

4
7
4
.4

1
9
1
.1

1
3
0
.9

6
9
7
.9

7
4
6
.1

9
8
4
.5

7
4
8
.3

0
9
9
.1

0
6
1
.4

5
20

0
25

.2
5

72
.5

7
99

.9
5

37
.0

8
65

.2
5

43
.3

4
99

.5
8

5
2
.0

1
7
3
.7

5
6
4
.3

3
9
9
.7

9
6
8
.5

2
9
1
.0

0
1
7
.8

9
9
7
.9

4
2
9
.9

0
7
8
.7

5
3
8
.7

7
9
9
.3

6
5
1
.4

9
50

0
15

.0
0

69
.1

7
99

.9
9

23
.5

5
62

.5
0

40
.3

9
99

.8
1

4
8
.5

4
6
5
.0

0
6
0
.7

5
9
9
.9

2
6
1
.8

4
9
1
.8

8
9
.8

5
9
8
.3

3
1
7
.7

8
7
2
.5

0
4
3
.2

7
9
9
.8

1
5
3
.7

5
10

00
15

.0
0

69
.8

3
99

.9
9

23
.1

3
53

.7
5

28
.2

6
99

.8
7

3
6
.5

9
4
8
.7

5
4
7
.5

8
9
9
.9

4
4
7
.3

2
9
3
.7

5
4
.7

6
9
8
.1

4
9
.0

5
6
1
.2

5
2
9
.8

3
9
9
.8

6
3
9
.9

8
15

00
16

.0
0

36
.6

7
99

.9
9

22
.1

4
60

.0
0

33
.9

2
99

.9
2

4
2
.2

8
6
0
.0

0
5
5
.5

7
9
9
.9

7
5
7
.0

0
9
4
.0

0
4
.2

1
9
8
.6

5
8
.0

6
6
2
.0

0
3
7
.6

4
9
9
.9

3
4
5
.5

7
20

00
12

.5
0

45
.0

0
10

0.
0

19
.3

3
62

.5
0

43
.2

8
99

.9
5

4
9
.6

5
5
2
.5

0
3
9
.4

5
9
9
.9

7
4
3
.6

1
9
2
.5

0
2
.9

5
9
8
.4

8
5
.7

1
6
7
.5

0
5
0
.9

2
9
9
.9

6
5
4
.6

9

A
.
th
a
li
a
n
a

Im
b

al
an

ce
S
V
M

K
N
N

R
F

N
B

d
e
e
p
N
N

(1
:I

R
)

s+
p

s−
F
1

s+
p

s−
F
1

s+
p

s−
F
1

s+
p

s−
F
1

s+
p

s−
F
1

1
89

.5
7

98
.3

0
98

.2
6

93
.4

8
95

.2
2

97
.1

0
96

.9
6

9
6
.0

3
9
5
.6

5
9
8
.2

8
9
8
.2

6
9
6
.9

1
9
2
.1

7
9
8
.2

0
9
8
.2

6
9
4
.9

8
9
3
.4

8
9
7
.4

6
9
7
.3

9
9
5
.3

1
5

83
.9

1
98

.0
1

99
.6

5
90

.1
3

94
.7

8
90

.5
2

97
.9

1
9
2
.4

2
9
5
.2

2
9
7
.0

8
9
9
.3

9
9
6
.0

1
9
1
.7

4
9
3
.6

6
9
8
.7

0
9
2
.5

1
9
8
.7

0
7
5
.0

9
9
3
.0

4
8
4
.9

4
10

78
.2

6
98

.0
0

99
.8

3
86

.6
8

94
.3

5
89

.0
8

98
.7

9
9
1
.4

8
9
4
.3

5
9
7
.7

6
9
9
.7

8
9
5
.9

5
9
1
.7

4
8
9
.0

5
9
8
.8

3
9
0
.2

4
9
7
.8

3
6
6
.7

2
9
5
.0

6
7
9
.2

1
50

37
.8

3
96

.1
1

99
.9

5
51

.0
1

90
.4

3
80

.4
0

99
.5

5
8
4
.9

3
9
1
.3

0
9
2
.1

0
9
9
.8

3
9
1
.3

1
9
0
.4

3
6
2
.5

1
9
8
.9

1
7
3
.7

7
9
4
.7

8
6
8
.9

0
9
9
.0

4
7
8
.9

5
10

0
23

.4
8

96
.4

1
99

.9
9

36
.6

9
87

.8
3

73
.2

2
99

.6
7

7
9
.3

7
9
0
.4

3
8
9
.6

9
9
9
.9

0
8
9
.9

5
8
9
.5

7
4
5
.8

0
9
8
.9

2
6
0
.4

7
9
1
.7

4
7
2
.8

7
9
9
.6

5
8
0
.9

1
20

0
17

.8
6

88
.0

0
99

.9
9

28
.7

4
83

.5
7

77
.5

9
99

.8
8

8
0
.2

7
8
7
.1

4
8
8
.2

4
9
9
.9

4
8
7
.2

3
8
9
.2

9
2
8
.6

3
9
8
.8

9
4
3
.2

6
9
1
.4

3
7
4
.1

4
9
9
.8

2
8
0
.9

8
50

0
10

.0
0

26
.6

7
10

0.
00

14
.0

5
84

.0
0

66
.5

5
99

.9
2

7
2
.7

4
7
4
.0

0
8
5
.6

7
9
9
.9

8
7
7
.7

4
8
4
.0

0
1
0
.5

3
9
8
.7

3
1
8
.6

6
8
2
.0

0
7
1
.7

1
9
9
.9

4
7
4
.2

3
10

00
5.

00
10

.0
0

10
0.

00
6.

67
70

.0
0

45
.0

0
99

.9
4

5
3
.3

3
4
5
.0

0
4
5
.0

0
9
9
.9

8
4
2
.3

3
8
0
.0

0
6
.3

7
9
9
.2

2
1
1
.7

8
8
0
.0

0
4
9
.5

2
9
9
.9

4
5
9
.1

1
15

00
10

.0
0

10
.0

0
10

0.
00

10
.0

0
70

.0
0

47
.5

0
99

.9
6

5
4
.0

0
5
0
.0

0
4
5
.0

0
9
9
.9

8
4
6
.6

7
8
0
.0

0
1
1
.0

0
9
9
.7

4
1
9
.2

0
9
0
.0

0
4
7
.8

3
9
9
.9

5
5
9
.0

0
20

00
0.

00
0.

00
10

0.
00

0.
00

70
.0

0
63

.3
3

99
.9

8
6
5
.0

0
3
0
.0

0
2
5
.0

0
9
9
.9

8
2
6
.6

7
8
0
.0

0
9
.1

5
9
9
.6

9
1
6
.2

9
9
0
.0

0
6
0
.0

0
9
9
.9

6
6
7
.8

6

10

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

G
. S

te
gm

ay
er

, L
. D

i P
er

si
a,

 M
. R

ub
io

lo
, M

. G
er

ar
d,

 M
. P

iv
id

or
i, 

C
. Y

on
es

, L
. A

. B
ug

no
n,

 T
. R

od
ri

gu
ez

, J
. R

aa
d 

&
 D

. H
. M

ilo
ne

; "
Pr

ed
ic

tin
g 

no
ve

l m
ic

ro
R

N
A

: a
 c

om
pr

eh
en

si
ve

 c
om

pa
ri

so
n 

of
 m

ac
hi

ne
 le

ar
ni

ng
 a

pp
ro

ac
he

s"
B

ri
ef

in
gs

 in
 B

io
in

fo
rm

at
ic

s,
 2

01
8.



T
ab

le
4:

U
n

su
p

er
v
is

ed
M

L
m

et
h

o
d

s
fo

r
p

re
-m

iR
N

A
p

re
d

ic
ti

o
n

.
H
.
sa
p
ie
n
s

Im
b

al
an

ce
K
M

S
O
M

H
C

S
C

d
e
e
p
S
O
M

(1
:I

R
)

s+
p

s−
F
1

s+
p

s−
F
1

s+
p

s−
F
1

s+
p

s−
F
1

s+
p

s−
F
1

1
99

.6
4

65
.5

2
46

.8
6

78
.9

8
96

.1
4

93
.3

0
93

.0
7

9
4
.6

9
9
8
.1

4
8
7
.4

0
8
5
.7

9
9
2
.4

0
9
9
.3

6
8
2
.1

0
7
8
.2

1
8
9
.8

8
9
5
.0

7
9
5
.1

6
9
5
.1

4
95

.1
0

5
99

.4
3

36
.5

2
65

.1
8

53
.3

4
92

.1
4

82
.8

8
96

.1
9

8
7
.2

3
9
4
.1

4
7
7
.5

6
9
4
.5

4
8
5
.0

1
9
8
.5

7
4
8
.9

3
7
9
.4

5
6
5
.3

7
9
0
.1

4
8
7
.6

2
9
7
.4

4
88

.8
2

10
99

.0
0

23
.4

3
67

.4
8

37
.8

4
90

.5
7

76
.1

0
97

.1
6

8
2
.6

8
9
1
.3

6
7
2
.1

4
9
6
.4

7
8
0
.5

9
9
8
.7

1
3
2
.0

9
7
9
.1

3
4
8
.4

1
8
9
.6

4
8
1
.1

5
9
7
.9

2
85

.1
6

50
98

.5
7

8.
28

78
.1

7
15

.2
7

85
.2

9
43

.5
5

97
.8

0
5
7
.6

4
8
3
.2

1
4
8
.2

4
9
8
.2

1
6
1
.0

4
9
8
.4

3
7
.9

8
7
7
.3

1
1
4
.7

5
8
3
.7

9
4
6
.3

3
9
8
.0

7
59

.6
5

10
0

97
.6

5
5.

44
83

.0
0

10
.3

0
80

.3
7

36
.9

2
98

.6
2

5
0
.5

6
7
9
.6

3
4
1
.4

3
9
8
.8

7
5
4
.4

4
9
6
.1

7
4
.8

4
8
1
.0

9
9
.2

1
7
7
.5

3
4
0
.6

2
9
8
.8

7
53

.2
7

20
0

95
.2

5
3.

34
86

.3
6

6.
45

75
.5

0
27

.6
9

99
.0

2
4
0
.4

4
7
0
.0

0
3
3
.1

8
9
9
.3

0
4
4
.9

4
8
6
.7

5
2
.9

0
8
5
.6

9
5
.6

2
6
9
.0

0
3
6
.9

1
9
9
.4

0
47

.7
4

50
0

92
.5

0
2.

94
93

.8
8

5.
69

75
.0

0
25

.0
0

99
.5

4
3
7
.2

0
6
9
.3

8
2
9
.3

2
9
9
.6

5
4
0
.6

1
7
3
.7

5
1
.9

8
9
2
.7

9
3
.8

6
6
4
.3

8
3
7
.7

0
9
9
.7

8
47

.0
2

10
00

91
.2

5
1.

96
95

.4
1

3.
84

61
.2

5
15

.6
8

99
.6

7
2
4
.9

1
5
8
.7

5
1
8
.5

3
9
9
.7

4
2
7
.8

8
7
0
.0

0
1
.2

2
9
4
.4

0
2
.3

9
4
7
.5

0
3
1
.1

6
9
9
.9

0
37

.2
3

15
00

92
.0

0
2.

48
97

.6
7

4.
82

70
.0

0
22

.2
9

99
.8

2
3
2
.9

0
6
2
.0

0
1
8
.2

1
9
9
.8

3
2
7
.8

2
5
4
.0

0
0
.9

8
9
6
.7

4
1
.9

3
4
0
.0

0
2
8
.5

7
9
9
.9

3
31

.6
6

20
00

92
.5

0
2.

69
98

.1
9

5.
22

65
.0

0
21

.9
8

99
.8

9
3
2
.4

8
6
7
.5

0
2
0
.3

4
9
9
.8

7
3
0
.6

0
6
0
.0

0
1
.1

6
9
7
.2

5
2
.2

6
4
2
.5

0
3
0
.7

8
9
9
.9

4
34

.3
2

A
.
th
a
li
a
n
a

Im
b

al
an

ce
K
M

S
O
M

H
C

S
C

d
e
e
p
S
O
M

(1
:I

R
)

s+
p

s−
F
1

s+
p

s−
F
1

s+
p

s−
F
1

s+
p

s−
F
1

s+
p

s−
F
1

1
99

.1
3

59
.2

7
30

.8
7

74
.0

5
96

.5
2

93
.8

8
93

.4
8

9
5
.0

9
9
6
.9

6
9
0
.7

2
9
0
.0

0
9
3
.7

0
9
7
.3

9
9
4
.0

3
9
3
.4

8
9
5
.5

7
9
5
.2

2
9
6
.7

0
9
6
.5

2
95

.8
5

5
96

.9
6

34
.4

3
62

.7
8

50
.7

4
94

.3
5

92
.8

5
98

.4
3

9
3
.3

1
9
5
.2

2
8
5
.2

2
9
6
.6

1
8
9
.8

3
9
5
.6

5
7
7
.1

7
9
4
.2

6
8
5
.3

3
9
3
.4

8
9
4
.1

9
9
8
.7

8
93

.7
0

10
96

.9
6

26
.0

3
71

.3
9

40
.8

5
93

.0
4

93
.4

6
99

.3
5

9
3
.1

7
9
3
.4

8
8
3
.1

8
9
8
.0

5
8
7
.8

2
9
3
.9

1
5
8
.1

0
9
3
.0

7
7
1
.5

9
9
3
.0

4
9
6
.4

6
9
9
.6

5
94

.6
7

50
96

.0
9

10
.2

2
82

.8
1

18
.4

5
89

.1
3

79
.0

0
99

.4
9

8
3
.2

5
9
1
.3

0
7
7
.4

2
9
9
.4

5
8
3
.4

2
9
4
.7

8
1
9
.1

3
9
1
.9

2
3
1
.7

8
9
1
.3

0
8
6
.3

5
9
9
.6

9
88

.4
2

10
0

96
.0

9
7.

43
87

.9
1

13
.7

8
89

.1
3

68
.9

6
99

.6
0

7
7
.6

9
8
9
.5

7
6
5
.7

1
9
9
.5

2
7
5
.3

5
9
3
.9

1
9
.3

6
9
0
.8

5
1
7
.0

1
8
8
.7

0
7
6
.8

6
9
9
.7

2
81

.9
6

20
0

93
.5

7
4.

79
90

.5
8

9.
09

87
.1

4
63

.2
4

99
.7

4
7
2
.9

5
8
8
.5

7
6
6
.8

8
9
9
.7

6
7
5
.5

0
9
4
.2

9
8
.1

6
9
4
.6

2
1
4
.9

9
8
4
.2

9
6
9
.9

7
9
9
.8

1
75

.5
6

50
0

88
.0

0
3.

17
95

.0
5

6.
12

84
.0

0
48

.6
1

99
.8

3
6
0
.6

2
8
6
.0

0
6
2
.1

5
9
9
.8

8
6
8
.1

8
8
0
.0

0
4
.3

6
9
6
.7

6
8
.2

4
8
2
.0

0
5
1
.3

1
9
9
.8

5
62

.1
6

10
00

90
.0

0
1.

38
95

.2
3

2.
72

85
.0

0
38

.3
6

99
.8

9
5
2
.0

4
7
5
.0

0
3
6
.1

9
9
9
.9

1
4
7
.7

8
5
0
.0

0
1
.2

6
9
7
.3

0
2
.4

6
5
5
.0

0
6
3
.3

3
9
9
.9

7
54

.6
7

15
00

80
.0

0
1.

22
97

.4
6

2.
41

90
.0

0
43

.6
7

99
.9

3
5
4
.5

2
7
0
.0

0
3
6
.5

9
9
.9

2
4
4
.0

0
7
0
.0

0
1
.3

8
9
7
.8

8
2
.6

9
4
0
.0

0
3
0
.0

0
9
9
.9

7
33

.3
4

20
00

90
.0

0
1.

03
96

.7
0

2.
04

50
.0

0
20

.8
3

99
.9

2
2
6
.8

6
6
0
.0

0
2
4
.1

0
9
9
.8

9
3
1
.1

0
6
0
.0

0
1
.1

5
9
8
.2

1
2
.2

7
6
0
.0

0
4
5
.0

0
9
9
.9

8
50

.0
0

11

si
nc

(i
) 

R
es

ea
rc

h 
In

st
itu

te
 f

or
 S

ig
na

ls
, S

ys
te

m
s 

an
d 

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (
fi

ch
.u

nl
.e

du
.a

r/
si

nc
)

G
. S

te
gm

ay
er

, L
. D

i P
er

si
a,

 M
. R

ub
io

lo
, M

. G
er

ar
d,

 M
. P

iv
id

or
i, 

C
. Y

on
es

, L
. A

. B
ug

no
n,

 T
. R

od
ri

gu
ez

, J
. R

aa
d 

&
 D

. H
. M

ilo
ne

; "
Pr

ed
ic

tin
g 

no
ve

l m
ic

ro
R

N
A

: a
 c

om
pr

eh
en

si
ve

 c
om

pa
ri

so
n 

of
 m

ac
hi

ne
 le

ar
ni

ng
 a

pp
ro

ac
he

s"
B

ri
ef

in
gs

 in
 B

io
in

fo
rm

at
ic

s,
 2

01
8.
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Figure 1: Machine learning approaches for pre-miRNA prediction with increasing imbalance levels in H. sapiens
dataset. Supervised (shades of red lines), unsupervised (shades of blue lines) and hybrid learner (green line).

4.3 Global comparative results

In order to summarize the results and to more easily evaluate the global behavior of all of the ML approaches,
Figure 1 and 2 show the F1 score obtained by all methods in each data set without SMOTE, and for each imbalance
level. In these figures in particular a further extreme imbalance case of twice the highest imbalance reported in the
tables (1:5,000) has been included in order to show the behavior closer to more real cases. Supervised models are
indicated with shades of red, unsupervised learners with shades of blue and deepNN is in green line because it is
a hybrid model having an unsupervised stage before the last supervised tuning of the neural network. From the
figures it can be easily seen how all methods noticeable decrease performance as imbalance increases.

Figure 1 shows the F1 scores for all methods in the H. sapiens data set. Up to 1:200, most of supervised models
maintain acceptable F1 scores, being the best ones RF and KNN, together with the hybrid deepNN. At the 1:500
imbalance, two quite separated groups are easily identified: RF, KNN, deepNN, HC, SOM and deepSOM, versus
very poor performance of SVM, NB, KM and SC. After this point up to 1:2,000, all methods continue falling up to
less than 50.00%. Between 1:2,500 and 1:5000 all supervised methods maintain poor values, except only for KNN
that falls to 41.11%. It is noteworthy that in this imbalance range, deepSOM and HC increase performance up
to around 50%. The best classifiers at the highest imbalance level are the hybrid deepNN and the unsupervised
learners deepSOM and HC; while all the other methods have very low performance. Moreover, it can be seen
that globally, up to 1:1,500 supervised methods are the best ones, but in the highest imbalance methods including
unsupervised learning stages have the best performance. That is, supervised methods are those more significantly
degraded.

Figure 2 shows the F1 scores for all methods in the A. thaliana data set. Again here, all methods are compromised
by the increasing imbalance level. Up to 1:1,500, two groups of classifiers are easily identified. The best group
includes KNN and RF together with the hybrid deepNN and the unsupervised HC, SOM and deepSOM. The worst
group includes NB, SVM, KM and SC, with extremely low F1 scores, which continue decreasing performance from
this point forward. At 1:2,500 the hybrid deepNN and two unsupervised methods are the best ones. Between
1:2,500 and the highest class imbalance, deepSOM increases F1 being the best one, followed by RF and SOM.
All other models inevitably collapse because of the high class imbalance. It should be noted in particular that
deepSOM, based on unsupervised models, performs much better compared with the most widely used model in this
field (Triplet-SVM) in both data sets.

In order to statistically evaluate differences between all the classifiers in high class imbalance (1:1000–1:5,000)
in both data sets and all folds, a Friedman rank test for F1 was applied and resulted in P¡1.73E-47 at α = 0.05,
indicating that the differences among the scores are statistically significant. The corresponding critical difference
(CD) diagram for post-hoc Nemenyi test [75], which obtained a CD=1.55, is shown in Figure 3. This statistical
analysis clearly indicates that, for the high imbalance present in pre-miRNAs, the best models are deepSOM,
KNN, deepNN, HC and SOM. In this group, SOM, deepSOM and HC are the best unsupervised methods, being
not statistically different from KNN and the hybrid deepNN, which need positive and negative labeled data sets.
The CD shows that there are no differences between NB, KM, SC and SVM, being SVM the worst one. Thus,
deepSOM, KNN, deepNN, HC, SOM and RF versus NB, KM, SC and SVM are confirmed to be the best and
worst classifiers for pre-miRNA prediction, respectively. The difference between these two groups of classifiers is
statistically significant.

This final comparative result is very interesting. First of all, it is a strong evidence that the most used and
published SVM models (such as triplet-SVM) is not the adequate classifier for pre-miRNAs predictions in close to
real-life scenarios. It also clearly shows that the more recent models including unsupervised stages can be superior
to standard supervised approaches. In more real situations where the imbalance can be even higher, models with
unsupervised learning could be preferably explored, since they can offer better performance and they do not need
a negative class definition.
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Figure 2: Machine learning approaches for pre-miRNA prediction with increasing imbalance levels in A. thaliana
dataset. Supervised (shades of red lines), unsupervised (shades of blue lines) and hybrid learner (green line).

5 DISCUSSION

It has to be remembered at this point that the differences between unsupervised and supervised ML approaches are
basically that supervised models need both class labels for training, while unsupervised methods do not need class
labels during training. For classification, the class labels of the positive samples are required only after training.
They first model the complete feature space regardless of class labels. Therefore, unsupervised models look at which
sequences are the closest ones to well-known pre-miRNAs only after learning.

For supervised methods, a negative class definition is required. In practice, it is very difficult to build an
appropiate set of negative examples for training them adequately, capable of effectively describing the non-pre-
miRNA class. Even though tRNAs and rRNAs have been generally used as negative training sets, it is not known
for sure whether hairpins from those RNA segments could not actually generate miRNAs [76]. Thus, the main
drawback of the supervised ML approaches is the lack of an appropriate negative set, which actually represent
negative examples that the classifier could find when analyzing genomics data. Since the real number of miRNAs in
any given genome is still an open issue, in most works it is assumed that the probability of finding a pre-miRNA in
any randomly chosen stem-loop extracted from a genome is very low. However, it cannot be generally guaranteed
that hairpins that would normally be processed by the miRNA-maturation pathway are not being included in the
negative training set.

This is particularly relevant in a high class imbalance context. In fact, a recent study on the impact of the
negative sets when predicting human pre-miRNAs has stated that most existing supervised classifiers cannot actually
provide reliable predictive performance on independent testing data sets because their negative training sets are
not sufficiently representative when there is a high class imbalance [77]. In such case, the obviously negative class is
well-learned and a large number of unknown sequences are predicted as positive (actually, false positives) that are
very difficult to validate with wet-lab experiments. Furthermore, when positive predictivity is analyzed in detail, it
may fall below 50%. In particular, it has already been shown that supervised models are less affected by low class
imbalance, but they are the models most affected in presence of high class imbalance [76].

Since the quantity of true pre-miRNA is increasing as time passes, if imbalance decreases, supervised models
could perform better after SMOTE. It would strongly depend on the real quantity of pre-miRNAs present in a
given organism, and the rate of novel pre-miRNA discovery for such organism. In a real scenario, the number of
known pre-miRNAs is in the order of hundreds for most genomes, and in the order of thousands in the case of
the human genome (there are 1881 well-known human miRNAs up-to-date in MirBase). The rest of the unlabeled
sequences can be in the order of millions. Thus, it is unlikely that such high class imbalance could decrease enough
to be adjusted with SMOTE.

Unsupervised models, instead, build a model from the data, reflecting the data closeness into the clusters. They
only look for the closer centroid to each sample, and classify sequences as pre-miRNA candidates if this centroid
belongs to a pre-miRNA cluster. An unsupervised approach does not use class labels to shape the acceptance
region in the learning stage and, since it does not try to identify the optimal margin between positive and negative
examples, it is also less likely to suffer from overtraining. Thus, it can be stated that the negative class labels
have a less important role in unsupervised methods than in supervised ones. For supervised learners, both types
of labels must be defined. In unsupervised ones, the negative class labels can be missing. After training, the class
assignment depends only on the presence of (at least) one positive case in a cluster, no matter how many other
unknown negatives samples there are also, together, in the same cluster. All the feature space is learned with the
same detail, that is, both positive and negative classes are modeled although in an unsupervised fashion, without
class labels. After training, the original labels of the positive class are used to identify the clusters that have the
best pre-miRNAs candidates.

From the results obtained in the comparisons, it can be stated that regarding the question on which ML approach
is the best (supervised or unsupervised), the answer strongly depends on the level of class imbalance present. The
comparative results show that when there is low to mid imbalance, supervised models have the best performance.
However, in the case of high class imbalance, closer to a real genome-wide prediction task where there can be one
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CD

10 9 8 7 6 5 4 3 2 1

3.3684 deepSOM

3.7961 KNN

4.3947 deepNN

4.5329 HC

4.6513 SOM4.7237RF

6.3882NB

7.2763KM

7.7368SC

8.1316SVM

Figure 3: Statistical significance diagram. Critical difference (CD) diagram for Nemenyi tests performed on human
and arabidopsis datasets for F1 of supervised and unsupervised ML approaches for pre-miRNA prediction. Bold lines
indicate groups of classifiers which are not significantly different (their average ranks differ by less than CD value).

hundred of well-known pre-miRNA in millions of unlabebeled sequences to classify, models including unsupervised
learning could perform better, being also more simple to understand, generate and use.

It can be stated that unsupervised learning has many advantages for this application and that there is plenty of
room for future research in computational algorithms based on this approach for novel miRNA precursors discovery.
For example, a negative class must not be defined nor artificially created. This makes these models much simpler to
build for a non-expert user, since all available sequence data can be provided as input without the labeling process.
Independently from the method and the number of clusters, after training the results are more easy to interpret.
Once the clusters that have well-known pre-miRNAs are located, the better candidates to new pre-miRNAs can be
identified very fast, simply as those other sequences within such clusters. Furthermore, in a high class-imbalance
context such as the pre-miRNA prediction, this is of particular relevance because in a more real scenario, there are
always very few positive examples in proportion to the unknown ones. Thus, when working with genome-wide data,
the unsupervised approach could be more naturally suited to learn the specific characteristics of the well-known
examples, even if only a few, not being biased by the class imbalance and the sequences that are distant to pre-
miRNA clusters. This way, it can be stated that these kind of models can be used in more realistic situations where
genome-wide data is under analysis. In summary, with the unsupervised approach, all genome-wide data of the
same species could be simply used, and the best highly-likely candidates to pre-miRNAs can be easily identified,
after training, as those sequences clustered together with well-known pre-miRNAs.

CONCLUSIONS

In pre-miRNA prediction there is a very high class imbalance between well-known pre-miRNAs and unlabeled
sequences that the supervised classification models cannot properly handle. This work provides to the bioinformatics
community a conceptual and updated review of existing ML approaches for pre-miRNA prediction. The results
obtained in the comparisons indicate that unsupervised machine learning and deep neural architectures can be more
suited for future research in computational methods for pre-miRNA prediction than classical supervised approaches,
such as SVM. Comparative results have clearly shown that unsupervised approaches and deep neural networks
including unsupervised learning are capable of maintaining good performance rates, while classical supervised
models quickly deteriorate when class imbalance increases. Additionally, the unsupervised approaches are more
naturally suited to an end user that has good knowledge on the pre-miRNAs of the genome under study, but has
no knowledge regarding the definition of a negative class for training a supervised classifier.

KEY POINTS

• The computational prediction of novel microRNAs involves identifying good candidate sequences in high class imbalanced
data in the context of machine learning.

• Supervised models need the definition of positive and negative class samples. But negative samples must be defined
artificially by a manual process.

• Unsupervised machine learning methods do not need class labels for training. The class labels, only of the positive
samples, are used later for the classification task. These approaches model the complete feature space with the same
detail, regardless of class labels. Thus, learning is not biased by the majority class.

• The answer to the question on which machine learning approach is the best (supervised or unsupervised) for this task
strongly depends on the level of class imbalance present.

• This study has shown that supervised methods are those more significantly degraded as imbalance ratio increases. At high
class imbalance and as long as the imbalance remains high, like in a real genome-wide prediction task with about 1,000
well-known pre-miRNAs and millions of unlabeled sequences, unsupervised approaches can be a better choice.
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• Future research in computational methods for pre-miRNA prediction should be oriented towards the design of deep neural
networks predictors and models that include unsupervised learning stages, in order to properly handle the inherent high
class imbalance.
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